EDUCBA
Bayesian Statistics: Excel to Python A/B Testing
EDUCBA

Bayesian Statistics: Excel to Python A/B Testing

EDUCBA

位教师:EDUCBA

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
5 小时 完成
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
5 小时 完成
灵活的计划
自行安排学习进度

您将学到什么

  • Apply Bayesian reasoning in Excel to calculate, update, and interpret probabilities.

  • Build probabilistic models and analyze predictive performance in real datasets.

  • Use Python with MCMC and PyMC for A/B testing, posterior inference, and scaling.

要了解的详细信息

可分享的证书

添加到您的领英档案

最近已更新!

September 2025

作业

10 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

该课程共有3个模块

This module introduces the core principles of Bayesian statistics and demonstrates their application in supervised machine learning and A/B testing. Learners will explore the fundamentals of Bayesian inference, examine practical examples of decision-making under uncertainty, and gain hands-on experience implementing Markov Chain Monte Carlo (MCMC) methods using PyMC. By the end of the module, participants will develop the ability to connect Bayesian theory with real-world machine learning experiments.

涵盖的内容

8个视频4个作业1个插件

This module introduces learners to the fundamentals of preparing healthcare datasets for Bayesian statistical modeling using Microsoft Excel. Learners will explore project goals, understand the structure of real-world healthcare testing data, and create efficient summaries for initial analysis. By examining historical, future, demographic, and center-based trends, students will gain the ability to organize, interpret, and structure data effectively, ensuring a strong foundation for Bayesian probability applications in healthcare analytics.

涵盖的内容

7个视频3个作业

This module guides learners through constructing and applying Bayesian probability tables in Microsoft Excel to analyze healthcare testing scenarios. Students will learn how to structure Bayesian frameworks, calculate joint probabilities, update prior probabilities with new evidence, and interpret outcomes across multiple testing cycles. By the end of this module, learners will be able to apply Bayesian reasoning to real-world healthcare data, enhancing accuracy in predictive healthcare analytics.

涵盖的内容

4个视频3个作业

位教师

EDUCBA
EDUCBA
407 门课程122,462 名学生

提供方

EDUCBA

从 Data Analysis 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题