Arizona State University
Bayesian Statistical Concepts and Methods

只需 199 美元(原价 399 美元)即可通过 Coursera Plus 学习更高水平的技能。立即节省

Arizona State University

Bayesian Statistical Concepts and Methods

George Runger
Edgar Hassler

位教师:George Runger

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
中级 等级

推荐体验

5 小时 完成
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
中级 等级

推荐体验

5 小时 完成
灵活的计划
自行安排学习进度

您将学到什么

  • Participants will learn fundamentals of Bayesian concepts and methods, including Bayesian models, Bayesian networks, and Markov chain Monte Carlo.

要了解的详细信息

可分享的证书

添加到您的领英档案

最近已更新!

January 2026

作业

3 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

该课程共有3个模块

This Specialization covers the use of statistical methods in today's business, industrial, and social environments, including several new methods and applications. H.G. Wells foresaw an era when the understanding of basic statistics would be as important for citizenship as the ability to read and write. Modern Statistics for Data-Driven Decision-Making teaches the basics of working with and interpreting data, skills necessary to succeed in Wells’s “new great complex world” that we now inhabit. In this course, learners will be able to use Bayesian methods in data analysis and modeling, to work with posterior distributions, distributions without closed form, directed acyclic graphs, and Markov chain Monte Carlo algorithms, and to use R and the Stan platform for statistical modeling. Learn more about the instructors who developed this course. Read the instructor bios and review the learning outcomes for the course.

涵盖的内容

5个视频3篇阅读材料1个作业

In Module 2, we will draw a Bayesian model as a graph and distinguish posterior distribution, posterior predictive distribution, and expected loss or cost. We will also calculate distributions without closed form, recognizing that we can use computational methods to draw from the distribution even when there's no straight-forward equation to define them. Be sure to review the learning objectives before beginning work in this module.

涵盖的内容

9个视频2篇阅读材料1个作业

In Module 3, we will employ R and the Stan platform for statistical modeling. You will explore Bayesian methods in data analysis and modeling; work with posterior distributions, distributions without closed form, directed acyclic graphs, and Markov Chain Monte Carlo algorithms. You will also be introduced to Bayesian hierarchical models, which estimate subgroup parameters relative to the parameters of a larger parent group. Be sure to view the course introduction video and review the learning objectives before beginning work in this module.

涵盖的内容

10个视频3篇阅读材料1个作业1次同伴评审

位教师

George Runger
Arizona State University
3 门课程4 名学生

提供方

从 Probability and Statistics 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题