Google Cloud
Art and Science of Machine Learning en Français
Google Cloud

Art and Science of Machine Learning en Français

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
中级 等级
需要一些相关经验
2 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
中级 等级
需要一些相关经验
2 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度

要了解的详细信息

可分享的证书

添加到您的领英档案

作业

7 项作业

授课语言:法语

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

积累特定领域的专业知识

本课程是 Machine Learning with TensorFlow on Google Cloud en Français 专项课程 专项课程的一部分
在注册此课程时,您还会同时注册此专项课程。
  • 向行业专家学习新概念
  • 获得对主题或工具的基础理解
  • 通过实践项目培养工作相关技能
  • 获得可共享的职业证书

该课程共有7个模块

Bienvenue dans "Art and Science of Machine Learning". Dans ce cours, nous allons voir les compétences essentielles que sont l'intuition, le bon sens et l'expérimentation, nécessaires pour ajuster vos modèles de ML et optimiser leurs performances. Nous verrons comment généraliser votre modèle à l'aide de techniques de régularisation, et nous évoquerons les effets des hyperparamètres tels que la taille de lot et le taux d'apprentissage sur les performances de votre modèle. Nous présenterons également certains des algorithmes d'optimisation les plus courants et vous montrerons comment spécifier une méthode d'optimisation dans votre code TensorFlow.

涵盖的内容

2个视频

Dans ce module, vous allez apprendre à régler la taille de lot et le taux d'apprentissage pour améliorer les performances du modèle, à optimiser votre modèle et à appliquer les concepts au code TensorFlow.

涵盖的内容

8个视频2篇阅读材料1个作业1个应用程序项目

Dans ce module, vous allez apprendre à faire la différence entre les paramètres et les hyperparamètres. Ensuite, nous aborderons l'approche traditionnelle de recherche de réseaux et verrons comment aller plus loin grâce à des algorithmes plus intelligents. Enfin, vous découvrirez à quel point Cloud ML Engine facilite l'automatisation des réglages des hyperparamètres.

涵盖的内容

5个视频1篇阅读材料1个作业2个应用程序项目

Dans ce module, nous allons évoquer la science qui accompagne l'art du machine learning. Nous allons d'abord découvrir comment effectuer la régularisation à des fins de parcimonie pour parvenir à des modèles plus simples et plus concis. Ensuite, nous verrons ce qu'est la régression logistique et comment déterminer les performances.

涵盖的内容

5个视频2篇阅读材料2个作业

Dans ce module, nous allons approfondir l'aspect scientifique du ML, en particulier les réseaux de neurones.

涵盖的内容

7个视频1篇阅读材料2个作业2个应用程序项目

Dans ce module, vous apprendrez à utiliser les représentations vectorielles continues pour gérer des données creuses, afin que les modèles de machine learning utilisant des données creuses consomment moins de mémoire et s'entraînent plus rapidement. Les représentations vectorielles continues permettent également d'effectuer une réduction de la dimensionnalité, et ainsi de rendre les modèles plus simples et plus généralisables.

涵盖的内容

7个视频1篇阅读材料1个作业1个应用程序项目

涵盖的内容

1个视频3篇阅读材料

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

Google Cloud Training
Google Cloud
1,985 门课程3,624,268 名学生

提供方

Google Cloud

从 Machine Learning 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题