This foundational course on Q-Learning equips you with the essential knowledge to understand reinforcement learning concepts and apply them in real-world AI scenarios. Learn the fundamentals of Q-Learning, including Q-values, rewards, episodes, temporal difference, and the exploration vs. exploitation trade-off. Progress to applying Q-Learning by determining Q-values and guiding agent decision-making. Gain practical skills through step-by-step guided demos, where you’ll implement Q-Learning and see how agents optimize their actions in environments like robotics, gaming, and intelligent systems. Build the confidence to design adaptive AI models that learn and improve over time.

Profitez d'une croissance illimitée avec un an de Coursera Plus pour 199 $ (régulièrement 399 $). Économisez maintenant.

Expérience recommandée
Ce que vous apprendrez
Grasp Q-Learning fundamentals and reinforcement learning concepts
Understand Q-values, rewards, episodes, and temporal difference
Balance exploration vs. exploitation in training AI agents
Implement Q-Learning models with hands-on demos for real-world use
Compétences que vous acquerrez
- Catégorie : Reinforcement Learning
- Catégorie : Model Evaluation
Détails à connaître

Ajouter à votre profil LinkedIn
septembre 2025
6 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Il y a 2 modules dans ce cours
Learn the fundamentals of Q-Learning, a key reinforcement learning algorithm for training intelligent agents. Start with an introduction to Q-Learning and understand its role in decision-making. Explore core components including Q-values, rewards, episodes, temporal difference, and the balance of exploration vs. exploitation. Build practical skills to implement Q-Learning and optimize agent performance in real-world applications.
Inclus
5 vidéos1 lecture3 devoirs
Learn to apply Q-Learning by understanding how Q-values are determined and used for agent decision-making. Explore the process of evaluating Q-values to guide optimal actions in reinforcement learning. Gain hands-on experience through guided demos, where you’ll implement Q-Learning step by step and build practical skills to train and optimize intelligent agents in real-world scenarios.
Inclus
3 vidéos3 devoirs
Instructeur

Offert par
En savoir plus sur Data Analysis
Statut : Essai gratuitUniversity of Alberta
Statut : PrévisualisationSimplilearn
Statut : PrévisualisationMathWorks
Statut : Essai gratuitNew York University
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?




Foire Aux Questions
Q-Learning is a reinforcement learning algorithm that helps agents learn optimal actions by maximizing future rewards.
This course is designed for beginners, developers, and professionals seeking practical skills in reinforcement learning.
You’ll learn Q-Learning fundamentals, including Q-values, rewards, exploration vs. exploitation, and hands-on implementation.
Plus de questions
Aide financière disponible,




