Deploying an AI model is only the beginning—keeping it reliable, explainable, and impactful in production requires strong MLOps skills. In this course, learners apply best practices to orchestrate the deployment lifecycle using continuous integration, continuous delivery, and tools like GitLab and Kubernetes. They analyze real telemetry data to investigate error spikes, trace root causes, and resolve performance issues with monitoring platforms such as Kibana. Finally, learners evaluate whether deployed models deliver on technical and business goals, comparing KPIs like conversion lift against targets and recommending next steps. Through guided labs, case studies, and discussions, learners gain practical experience in deploying, diagnosing, and evaluating AI systems with confidence.

Acquérir des compétences de haut niveau avec Coursera Plus pour 199 $ (régulièrement 399 $). Économisez maintenant.

Expérience recommandée
Compétences que vous acquerrez
- Catégorie : Continuous Deployment
- Catégorie : Continuous Delivery
- Catégorie : Artificial Intelligence
- Catégorie : Root Cause Analysis
- Catégorie : DevOps
- Catégorie : Application Deployment
- Catégorie : Operational Analysis
- Catégorie : CI/CD
- Catégorie : Performance Metric
- Catégorie : Performance Measurement
- Catégorie : Performance Analysis
- Catégorie : Application Performance Management
Détails à connaître

Ajouter à votre profil LinkedIn
décembre 2025
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Il y a un module dans ce cours
Deploying an AI model is only the beginning—keeping it reliable, explainable, and impactful in production requires strong MLOps skills. In this course, learners apply best practices to orchestrate the deployment lifecycle using continuous integration, continuous delivery, and tools like GitLab and Kubernetes. They analyze real telemetry data to investigate error spikes, trace root causes, and resolve performance issues with monitoring platforms such as Kibana. Finally, learners evaluate whether deployed models deliver on technical and business goals, comparing KPIs like conversion lift against targets and recommending next steps. Through guided labs, case studies, and discussions, learners gain practical experience in deploying, diagnosing, and evaluating AI systems with confidence.
Inclus
7 vidéos3 lectures4 devoirs
Instructeur

Offert par
En savoir plus sur Cloud Computing
Statut : Essai gratuit
Statut : Essai gratuit
Statut : Essai gratuit
Google Cloud
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?




Foire Aux Questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Plus de questions
Aide financière disponible,
¹ Certains travaux de ce cours sont notés par l'IA. Pour ces travaux, vos Données internes seront utilisées conformément à Notification de confidentialité de Coursera.




