This comprehensive course bridges machine learning fundamentals with specialized healthcare AI applications, guiding students through the complete AI model lifecycle from data preprocessing to production deployment. You'll master core ML algorithms and deep learning architectures while gaining hands-on experience building medical imaging analysis systems, predictive models for patient outcomes, and clinical NLP applications using Azure AI services including Azure Machine Learning, Cognitive Services, and Computer Vision. The curriculum emphasizes healthcare-specific challenges including rigorous clinical validation methodologies that satisfy regulatory requirements, comprehensive bias detection and mitigation strategies to ensure equitable performance across diverse patient populations, and secure HIPAA-compliant data handling practices. Through practical labs and real-world case studies, you'll develop skills in model training, hyperparameter optimization, performance evaluation using clinical metrics (sensitivity, specificity, AUC), MLOps implementation with CI/CD pipelines, and creating compelling data visualizations that communicate AI insights to clinical stakeholders.

Cela se termine bientôt : Obtenez des compétences de niveau supérieur avec Coursera Plus pour 199 $ (régulièrement 399 $). Économisez maintenant.

Machine Learning and AI Applications in Healthcare
Ce cours fait partie de Microsoft Azure AI in Healthcare Certificat Professionnel

Instructeur : Microsoft
Inclus avec
Expérience recommandée
Ce que vous apprendrez
Build and deploy machine learning models using healthcare datasets and Azure AI tools.
Create predictive analytics solutions for patient outcomes and clinical decision support.
Evaluate and interpret AI models to ensure fairness, reliability, and actionable insights in healthcare.
Compétences que vous acquerrez
- Catégorie : Applied Machine Learning
- Catégorie : Power BI
- Catégorie : Clinical Research
- Catégorie : Image Analysis
- Catégorie : Computer Vision
- Catégorie : MLOps (Machine Learning Operations)
- Catégorie : Data Visualization Software
- Catégorie : Feature Engineering
- Catégorie : Model Evaluation
- Catégorie : Health Informatics
- Catégorie : AI Security
- Catégorie : Model Deployment
- Catégorie : Medical Imaging
- Catégorie : Azure Synapse Analytics
- Catégorie : Microsoft Azure
- Catégorie : Predictive Analytics
- Catégorie : Responsible AI
- Catégorie : Data Preprocessing
- Catégorie : Machine Learning
- Catégorie : Artificial Intelligence
Détails à connaître

Ajouter à votre profil LinkedIn
janvier 2026
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Élaborez votre expertise en Machine Learning
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable auprès de Microsoft

Il y a 4 modules dans ce cours
This foundational module introduces learners to essential machine learning concepts specifically applied to healthcare contexts. Students explore the complete AI model lifecycle from initial data preparation through deployment, gaining hands-on experience with Azure ML Studio's visual interface. The module emphasizes practical application of ML fundamentals while establishing critical validation practices necessary for clinical environments.
Inclus
6 vidéos6 lectures4 devoirs
This module addresses critical challenges in healthcare AI implementation by focusing on bias detection, system reliability, and model interpretability. Learners develop expertise in identifying and mitigating bias in healthcare datasets while implementing fairness constraints and reliability frameworks. The module emphasizes creating interpretable AI solutions that translate complex model outputs into clinically meaningful insights for healthcare professionals.
Inclus
6 vidéos5 lectures5 devoirs
This module explores specialized applications of AI in medical imaging analysis and patient risk prediction. Students learn to implement computer vision solutions for diagnostic imaging support while developing sophisticated predictive models for clinical risk assessment. The module combines hands-on experience with Azure Cognitive Services and pre-built model libraries to create practical healthcare AI applications.
Inclus
6 vidéos6 lectures4 devoirs
This module focuses on transforming healthcare data and AI predictions into actionable visual insights for clinical decision-making. Learners master data integration techniques using Azure Synapse while creating comprehensive dashboards with Power BI. The module emphasizes building visualization solutions that effectively communicate complex healthcare analytics to diverse stakeholder audiences, from clinicians to administrators.
Inclus
6 vidéos6 lectures5 devoirs
Obtenez un certificat professionnel
Ajoutez ce titre à votre profil LinkedIn, à votre curriculum vitae ou à votre CV. Partagez-le sur les médias sociaux et dans votre évaluation des performances.
En savoir plus sur Machine Learning
Statut : PrévisualisationCleveland Clinic
Statut : Essai gratuit
Statut : Essai gratuit
Statut : Essai gratuit
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?





Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Certificate, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Plus de questions
Aide financière disponible,
¹ Certains travaux de ce cours sont notés par l'IA. Pour ces travaux, vos Données internes seront utilisées conformément à Notification de confidentialité de Coursera.

