Evaluate LLMs: Test and Prove Significance is an intermediate course for ML engineers, AI practitioners, and data scientists tasked with proving the value of model updates. When making high-stakes deployment decisions, a simple accuracy score is not enough. This course equips you with the statistical methods to rigorously validate LLM performance improvements. You will learn to quantify uncertainty by calculating and interpreting confidence intervals, and to prove whether changes are meaningful by conducting formal hypothesis tests like the Chi-Square test. Through hands-on labs using Python libraries like SciPy and Matplotlib, you will analyze model outputs, test for statistical significance, and create compelling visualizations with error bars that clearly communicate your findings to stakeholders. By the end of this course, you will be able to move beyond subjective "it seems better" evaluations to confidently state, "we can prove it's better," ensuring every deployment decision is backed by sound statistical evidence.

Acquérir des compétences de haut niveau avec Coursera Plus pour 199 $ (régulièrement 399 $). Économisez maintenant.

Expérience recommandée
Ce que vous apprendrez
Rigorously evaluate LLM performance using statistical tests and confidence intervals to make data-driven deployment decisions.
Compétences que vous acquerrez
- Catégorie : Experimentation
- Catégorie : Model Evaluation
- Catégorie : Probability & Statistics
- Catégorie : Data-Driven Decision-Making
- Catégorie : Performance Metric
- Catégorie : Statistical Analysis
- Catégorie : Large Language Modeling
- Catégorie : Statistical Inference
- Catégorie : Statistical Methods
- Catégorie : Jupyter
- Catégorie : Statistical Hypothesis Testing
- Catégorie : Data Storytelling
- Catégorie : Matplotlib
- Catégorie : Data Presentation
- Catégorie : Statistical Visualization
Détails à connaître

Ajouter à votre profil LinkedIn
décembre 2025
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Il y a un module dans ce cours
This course provides an end-to-end walkthrough of how to rigorously evaluate, validate, and communicate the performance of Large Language Models (LLMs). You will move from understanding why single metrics are insufficient to quantifying uncertainty with confidence intervals, proving improvements with hypothesis tests, and finally, creating persuasive visualizations to support data-driven deployment decisions.
Inclus
5 vidéos2 lectures3 devoirs3 laboratoires non notés
Instructeur

Offert par
En savoir plus sur Machine Learning
Statut : Essai gratuitSimplilearn
Statut : Essai gratuit
Statut : Essai gratuit
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?





Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Plus de questions
Aide financière disponible,
¹ Certains travaux de ce cours sont notés par l'IA. Pour ces travaux, vos Données internes seront utilisées conformément à Notification de confidentialité de Coursera.


