This course guides you through the process of transforming raw financial data into a clean, trustworthy dataset using Python and pandas. You’ll begin by exploring how to load data into a notebook environment and conduct quick inspections to identify structural issues, formatting inconsistencies, unusual numeric patterns, and missing values. Building on these observations, you’ll apply essential cleaning techniques used by analysts every day—fixing data types, standardizing text categories, resolving or documenting missingness, and removing duplicates. Through guided walkthroughs, hands-on practice, and interactive reflection, you’ll develop a repeatable workflow you can apply to budgeting, forecasting, reporting, or any analysis that relies on sound financial information. By the end of the course, you’ll confidently prepare analysis-ready datasets, make informed cleaning decisions, and communicate your process clearly to colleagues and stakeholders.

Acquérir des compétences de haut niveau avec Coursera Plus pour 199 $ (régulièrement 399 $). Économisez maintenant.

Data Cleaning with Python for Finance
Ce cours fait partie de Spécialisation Quantitative Finance & Risk Modeling

Instructeur : ansrsource instructors
Inclus avec
Expérience recommandée
Compétences que vous acquerrez
- Catégorie : Data Validation
- Catégorie : Exploratory Data Analysis
- Catégorie : Pandas (Python Package)
- Catégorie : Financial Data
- Catégorie : Data Manipulation
- Catégorie : Data Preprocessing
- Catégorie : Jupyter
- Catégorie : Data Transformation
- Catégorie : Data Integrity
- Catégorie : Data Quality
- Catégorie : Data Cleansing
- Catégorie : Descriptive Statistics
- Catégorie : Data Wrangling
- Catégorie : Data Import/Export
Détails à connaître

Ajouter à votre profil LinkedIn
janvier 2026
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable

Il y a un module dans ce cours
This course guides you through the process of transforming raw financial data into a clean, trustworthy dataset using Python and pandas. You’ll begin by exploring how to load data into a notebook environment and conduct quick inspections to identify structural issues, formatting inconsistencies, unusual numeric patterns, and missing values. Building on these observations, you’ll apply essential cleaning techniques used by analysts every day—fixing data types, standardizing text categories, resolving or documenting missingness, and removing duplicates. Through guided walkthroughs, hands-on practice, and interactive reflection, you’ll develop a repeatable workflow you can apply to budgeting, forecasting, reporting, or any analysis that relies on sound financial information. By the end of the course, you’ll confidently prepare analysis-ready datasets, make informed cleaning decisions, and communicate your process clearly to colleagues and stakeholders.
Inclus
6 vidéos2 lectures3 devoirs
Obtenez un certificat professionnel
Ajoutez ce titre à votre profil LinkedIn, à votre curriculum vitae ou à votre CV. Partagez-le sur les médias sociaux et dans votre évaluation des performances.
Instructeur

Offert par
En savoir plus sur Data Analysis
Statut : Essai gratuitGoogle
Statut : Essai gratuitUniversity of Illinois Urbana-Champaign
Statut : Essai gratuitCorporate Finance Institute
Statut : Essai gratuitUniversity of Colorado Boulder
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?




Foire Aux Questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Plus de questions
Aide financière disponible,
¹ Certains travaux de ce cours sont notés par l'IA. Pour ces travaux, vos Données internes seront utilisées conformément à Notification de confidentialité de Coursera.




