Transition from theoretical concepts to production-ready engineering in this hands-on course which is the final part in "Fundamentals of Generative AI" specialization. Designed for learners ready to move beyond the theory, this course focuses entirely on construction: you won't just learn about Large Language Models (LLMs); you will build, refine, and deploy them.

Profitez d'une croissance illimitée avec un an de Coursera Plus pour 199 $ (régulièrement 399 $). Économisez maintenant.

Expérience recommandée
Ce que vous apprendrez
Construct and evaluate Transformer-based LLMs from scratch using PyTorch and industry metrics like ROUGE and BLEU.
Engineer Retrieval Augmented Generation (RAG) pipelines using LangChain to integrate current, domain-specific knowledge into models.
Deploy autonomous AI Agents to production environments on Google Cloud Platform (Vertex AI) using professional workflows.
Compétences que vous acquerrez
- Catégorie : Model Evaluation
- Catégorie : PyTorch (Machine Learning Library)
- Catégorie : Natural Language Processing
- Catégorie : Generative Model Architectures
- Catégorie : Model Deployment
- Catégorie : LangChain
- Catégorie : Google Cloud Platform
- Catégorie : Large Language Modeling
- Catégorie : Prompt Engineering
- Catégorie : Vector Databases
- Catégorie : Transfer Learning
- Catégorie : System Monitoring
- Catégorie : Embeddings
- Catégorie : Deep Learning
- Catégorie : Development Environment
- Catégorie : Generative AI Agents
- Catégorie : Artificial Intelligence and Machine Learning (AI/ML)
- Catégorie : Generative AI
Détails à connaître

Ajouter à votre profil LinkedIn
décembre 2025
3 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Il y a 3 modules dans ce cours
In this module, we dive deep into the Transformer architecture, its core mechanics, and different transformer architecture types (encoder-only, decoder-only, encoder-decoder). We gain hands-on experience by building and training a complete suite of PyTorch-based models from scratch. The module concludes with strategic deployment skills, teaching when to build custom models versus leveraging pre-trained models for efficiency and state-of-the-art results.
Inclus
18 vidéos11 lectures1 devoir
Module 2 addresses the limitations of static knowledge and hallucinations in Large Language Models (LLMs) by introducing Retrieval Augmented Generation (RAG). Learners will progress from building fundamental pipelines with Ollama and LangChain to implementing production-ready systems by adding rigorous RAG evaluation and utilizing advanced techniques such as custom chunking strategies, vector stores, reranking, and query transformations to optimize context retrieval and response generation. The module concludes with an overview of another adaptation technique called finetuning and a comparison of RAG vs. finetuning.
Inclus
13 vidéos2 lectures1 devoir
Module 3 marks a pivotal transition from passive information retrieval to the dynamic realm of autonomous AI Agents, anchored by the "Understand, Think, Take Action" conceptual framework. Students will critically evaluate development ecosystems before applying these concepts to build a functional Summarizer Agent. The module emphasizes professional engineering standards, guiding learners through a complete lifecycle that includes environment management with Poetry, deployment to the Vertex AI Engine, and the implementation of robust performance monitoring using Google Cloud Platform’s logging and tracing tools.
Inclus
15 vidéos1 lecture1 devoir
Offert par
En savoir plus sur Algorithms
Statut : Essai gratuitStarweaver
Statut : Essai gratuit
Statut : Essai gratuitSimplilearn
Statut : Essai gratuit
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?




Foire Aux Questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Plus de questions
Aide financière disponible,







