Optimize AI: Build Reusable Model Pipelines is an intermediate course for machine learning engineers and data scientists aiming to create efficient, scalable, and maintainable AI workflows. In a world of rapidly evolving models, choosing the right one is only the beginning. This course moves beyond model selection to focus on the critical next step: building standardized, reusable pipelines that ensure consistency and accelerate development.

Genießen Sie unbegrenztes Wachstum mit einem Jahr Coursera Plus für 199 $ (regulär 399 $). Jetzt sparen.

Optimize AI: Build Reusable Model Pipelines
Dieser Kurs ist Teil von Spezialisierung für Agentic AI Development & Security

Dozent: LearningMate
Bei enthalten
Empfohlene Erfahrung
Was Sie lernen werden
Build reusable ML pipelines. Analyze model trade-offs, ensure reproducibility, and apply best practices for maintainable AI systems.
Kompetenzen, die Sie erwerben
- Kategorie: Data Preprocessing
- Kategorie: Version Control
- Kategorie: Model Evaluation
- Kategorie: Model Deployment
- Kategorie: Scikit Learn (Machine Learning Library)
- Kategorie: Large Language Modeling
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
Dezember 2025
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage

In diesem Kurs gibt es 2 Module
This module addresses the critical trade-offs between large, general-purpose models and smaller, custom-tuned models. You will learn to analyze the balance between performance, inference speed, and cost, enabling you to make strategic, data-driven decisions when selecting a model for a specific business problem.
Das ist alles enthalten
1 Video1 Lektüre1 Aufgabe1 Unbewertetes Labor
This module focuses on building reproducible and maintainable machine learning workflows. You will learn to use Scikit-learn's Pipeline object to chain together preprocessing and modeling steps, eliminating manual errors and creating a standardized, end-to-end process for model training and deployment.
Das ist alles enthalten
2 Videos1 Lektüre2 Aufgaben1 Unbewertetes Labor
Erwerben Sie ein Karrierezertifikat.
Fügen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.
Dozent

von
Mehr von Machine Learning entdecken
Status: Kostenloser Testzeitraum
Status: Kostenloser Testzeitraum
Status: Kostenloser Testzeitraum
Warum entscheiden sich Menschen für Coursera für ihre Karriere?





Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Weitere Fragen
Finanzielle Unterstützung verfügbar,
¹ Einige Aufgaben in diesem Kurs werden mit AI bewertet. Für diese Aufgaben werden Ihre Daten in Übereinstimmung mit Datenschutzhinweis von Courseraverwendet.


