This course equips you with the essential skills to take generative AI models from development to production. You will learn to implement robust MLOps practices on Azure, including automated CI/CD pipelines, version control, and full lifecycle management for your models. Simultaneously, you will dive into the critical principles of Responsible AI, using Microsoft’s framework to build fair, transparent, and ethical models that you can deploy with confidence.

Genießen Sie unbegrenztes Wachstum mit einem Jahr Coursera Plus für 199 $ (regulär 399 $). Jetzt sparen.

Empfohlene Erfahrung
Kompetenzen, die Sie erwerben
- Kategorie: Azure DevOps Pipelines
- Kategorie: Continuous Monitoring
- Kategorie: CI/CD
- Kategorie: Responsible AI
- Kategorie: Model Deployment
- Kategorie: Microsoft Azure
- Kategorie: Version Control
- Kategorie: Data Ethics
- Kategorie: System Monitoring
- Kategorie: Application Lifecycle Management
- Kategorie: Azure DevOps
- Kategorie: Generative AI
- Kategorie: MLOps (Machine Learning Operations)
- Kategorie: AI Workflows
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
11 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

In diesem Kurs gibt es 4 Module
This module introduces the core principles of MLOps (machine learning operations), such as automation and reproducibility. Learners will explore the complete AI model lifecycle, from initial setup to deployment, and learn to manage these stages effectively using Azure ML and tools like MLflow.
Das ist alles enthalten
5 Videos6 Lektüren3 Aufgaben
This module focuses on automating the AI development process. You will be introduced to the fundamentals of version control with Git, a critical skill for any professional developer. To support learners who may be new to this tool, this module will provide a practical guide to essential commands and demonstrate their use within Azure Repos. With this foundation, you will then build an end-to-end Continuous Integration/Continuous Deployment (CI/CD) pipeline in Azure to automatically train, validate, and deploy your models, turning your manual workflow into a robust, automated system.
Das ist alles enthalten
3 Videos5 Lektüren3 Aufgaben
This module addresses the critical post-deployment phase of MLOps. Learners will implement robust monitoring and logging frameworks using tools like Azure Monitor, Application Insights, and MLflow to track model performance and ensure reliability. Additionally, they will explore and apply practical strategies for managing and optimizing the costs associated with training and hosting AI models in Azure.
Das ist alles enthalten
3 Videos6 Lektüren3 Aufgaben
This module focuses on the critical importance of building trustworthy and ethical AI. Learners will explore foundational ethical principles like fairness and transparency. They will then learn to operationalize these concepts using Microsoft's Responsible AI framework and Azure's built-in tools to assess, track, and mitigate issues like bias in generative models.
Das ist alles enthalten
4 Videos5 Lektüren2 Aufgaben
Warum entscheiden sich Menschen für Coursera für ihre Karriere?





Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Certificate, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Weitere Fragen
Finanzielle Unterstützung verfügbar,


