AppDynamics Monitoring for Machine Learning Applications is a beginner-level course designed to equip data scientists, ML engineers, and DevOps professionals with the specialized monitoring skills needed for production ML systems.

Erwerben Sie mit Coursera Plus für 199 $ (regulär 399 $) das nächste Level. Jetzt sparen.

Empfohlene Erfahrung
Kompetenzen, die Sie erwerben
- Kategorie: Artificial Intelligence and Machine Learning (AI/ML)
- Kategorie: Performance Tuning
- Kategorie: Performance Analysis
- Kategorie: MLOps (Machine Learning Operations)
- Kategorie: Data Mapping
- Kategorie: Model Deployment
- Kategorie: System Monitoring
- Kategorie: Anomaly Detection
- Kategorie: Application Performance Management
- Kategorie: Process Optimization
- Kategorie: Continuous Monitoring
- Kategorie: Performance Metric
- Kategorie: Root Cause Analysis
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
Dezember 2025
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

In diesem Kurs gibt es 3 Module
In this introductory lesson, learners will explore the fundamentals of AppDynamics monitoring platform and understand its unique application to machine learning environments. They will discover how modern ML applications require specialized monitoring approaches and learn about AppDynamics' architecture, core components, and AI-powered capabilities that make it particularly suited for data science workflows.
Das ist alles enthalten
3 Videos3 Lektüren1 Aufgabe
In this hands-on lesson, learners will dive deep into the practical implementation of AppDynamics monitoring for machine learning systems. They will learn to map complex ML application flows, configure performance tracking for data science workflows, and set up health rules specifically designed for ML operations. Through real-world examples and guided exercises, learners will master the techniques needed to create comprehensive monitoring solutions that capture both infrastructure performance and ML-specific metrics critical for production success.
Das ist alles enthalten
3 Videos1 Lektüre1 Aufgabe
In this advanced lesson, learners will master the sophisticated diagnostic and optimization capabilities of AppDynamics for machine learning applications. They will learn to identify performance bottlenecks, conduct root-cause analysis specific to ML systems, and implement optimization strategies that enhance both technical performance and business outcomes. Through real-world troubleshooting scenarios and hands-on optimization exercises, learners will develop the expertise needed to maintain high-performing ML applications in production environments and ensure their systems deliver consistent business value.
Das ist alles enthalten
4 Videos1 Lektüre3 Aufgaben
Dozent

von
Mehr von Cloud Computing entdecken
Status: Vorschau
Status: VorschauCoursera
Status: Vorschau
Status: Kostenloser Testzeitraum
Warum entscheiden sich Menschen für Coursera für ihre Karriere?




Häufig gestellte Fragen
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Weitere Fragen
Finanzielle Unterstützung verfügbar,
¹ Einige Aufgaben in diesem Kurs werden mit AI bewertet. Für diese Aufgaben werden Ihre Daten in Übereinstimmung mit Datenschutzhinweis von Courseraverwendet.




