回归课程可以帮助您学习统计建模、数据分析技术以及如何解释变量之间的关系。您可以掌握线性回归、Logistic Regression、理解残差以及评估模型性能的技能。许多课程都会介绍 R、Prediction 和 Excel 等工具,这些工具支持进行分析和数据 Visualization,让您可以将这些技能应用到实际工作中,如根据数据预测结果和做出明智的决策。

Johns Hopkins University
您将获得的技能: 统计建模, 回归分析, 统计推理, 逻辑回归, 概率与统计, 模型评估, 数据分析, 统计分析
混合 · 课程 · 1-4 周

Duke University
您将获得的技能: 统计建模, 回归分析, 探索性数据分析, 预测建模, 统计推理, 模型评估, 相关性分析, R 语言程序设计(中文版), 数据分析, 统计分析, 统计
初级 · 课程 · 1-4 周

您将获得的技能: Regression Analysis, Statistical Hypothesis Testing, Logistic Regression, Model Evaluation, Statistical Modeling, Predictive Modeling, Statistical Analysis, Advanced Analytics, Data Analysis, Correlation Analysis, Predictive Analytics, Machine Learning, Variance Analysis, Python Programming
高级设置 · 课程 · 1-3 个月

DeepLearning.AI
您将获得的技能: 回归分析, 预测建模, 模型评估, 逻辑回归, 机器学习, Python 程序设计, NumPy, 分类算法, 无监督学习, Scikit-learn (机器学习库), 人工智能, Jupyter, 监督学习, 功能工程, 数据预处理
初级 · 课程 · 1-4 周

多位教师
您将获得的技能: Transfer Learning, 预测建模, 决策树学习, 机器学习, 无监督学习, 监督学习, 强化学习, NumPy, 模型评估, Jupyter, 分类算法, 人工智能, 功能工程, 随机森林算法, 数据伦理, 深度学习, Scikit-learn (机器学习库), 张力流, 应用机器学习, 数据预处理
初级 · 专项课程 · 1-3 个月

Arizona State University
您将获得的技能: Probability & Statistics, Analytical Skills, Exploratory Data Analysis, Estimation, Logistic Regression
中级 · 课程 · 1-3 个月

Meta
您将获得的技能: 统计建模, 回归分析, 数据建模, 统计推理, 描述性统计, Tableau 软件, 概率与统计, 时间序列分析和预测, A/B 测试, 营销分析, 统计方法, 抽样(统计), 统计假设检验, 数据分析, 描述性分析, 商业分析, 分析, 统计分析, 统计
初级 · 课程 · 1-3 个月

Corporate Finance Institute
您将获得的技能: Regression Analysis, Statistical Modeling, Statistical Analysis, Predictive Modeling, Data Analysis, Scikit Learn (Machine Learning Library), Microsoft Excel, Linear Algebra, Model Evaluation, Supervised Learning, Exploratory Data Analysis
高级设置 · 课程 · 1-3 个月

Illinois Tech
您将获得的技能: Regression Analysis, R Programming, R (Software), Data Analysis, Statistical Analysis, Statistical Inference, Data Science, Statistical Modeling, Logistic Regression, Linear Algebra, Probability & Statistics, Scatter Plots
攻读学位
中级 · 课程 · 1-4 周

University of Colorado Boulder
您将获得的技能: Regression Analysis, Supervised Learning, Model Evaluation, Logistic Regression, Statistical Analysis, Data Analysis, Statistical Modeling, Predictive Modeling, Machine Learning Methods, Feature Engineering, Data Preprocessing, Exploratory Data Analysis
中级 · 课程 · 1-3 个月

University of Pittsburgh
您将获得的技能: NumPy, Matplotlib, Linear Algebra, Pandas (Python Package), Data Manipulation, Applied Mathematics, Data Visualization, Python Programming, Data Analysis, Data Science, Regression Analysis, Data Visualization Software, Mathematics and Mathematical Modeling, Probability & Statistics, Statistics, Numerical Analysis, Mathematical Modeling, Machine Learning, Computational Logic, Logical Reasoning
攻读学位
初级 · 课程 · 1-4 周

University of Washington
您将获得的技能: 统计建模, 回归分析, Python 程序设计, 预测建模, 机器学习, 监督学习, Algorithm, 模型评估, 功能工程, 数据预处理
混合 · 课程 · 1-3 个月
Regression 是一种用于了解变量之间关系的统计方法。它有助于根据输入数据预测结果,是金融、医疗保健和营销等各个领域的重要工具。通过分析历史数据,回归可以让专业人士做出明智的决策、识别趋势并预测未来事件。了解 Regression 非常重要,因为它能提供洞察力,从而在商业和研究领域制定更好的战略并提高绩效。
Regression 分析领域的职业横跨多个领域,包括数据分析、统计、金融和机器学习。职位名称可能包括数据分析师、统计学家、业务分析师和数据科学家。这些职位通常要求具备解释数据和应用回归技术解决复杂问题的能力。随着企业越来越依赖数据驱动决策,熟练掌握回归技术的专业人员需求量很大。
要有效学习Regression,应重点掌握几项关键技能。首先,对统计学的扎实理解至关重要,因为回归是以统计学原理为基础的。此外,熟练掌握 Python 或 R 等编程语言有利于实现回归模型。熟悉数据 Visualization工具和技术也有助于您清晰地解释和展示研究结果。最后,机器学习概念方面的知识可以提高您在预测分析中应用 Regression 的能力。
有许多在线课程可以帮助您学习 Regression。一些值得注意的选项包括建立回归、分类和聚类模型以及线性回归。这些课程涵盖回归的各个方面,从基础概念到高级应用,适合不同水平的学习者。
是的,您可以通过两种方式免费开始在 Coursera 上学习 Regression:
如果您想继续学习、获得 Regression 证书或在预览或试用后解锁全部课程访问权限,您可以升级或申请经济援助。
要有效地学习 Regression,首先要选择一门符合您当前技能水平和目标的课程。仔细研读课程材料,完成作业,并使用真实数据集进行练习,以加深理解。此外,还可以考虑加入在线论坛或学习小组,与同行讨论概念并分享见解。Regression 技术的定期练习和应用将有助于巩固您的知识并建立信心。
回归课程涵盖的典型主题包括线性回归、Logistic Regression、模型验证和变量选择。您还可以探索非参数回归和广义线性模型等高级课题。课程通常会结合实际应用,让您处理数据集和使用软件工具来有效实施 Regression 技术。
要对员工进行回归方面的培训和技能提升,Excel Regression Models for Business Forecasting和Variable Selection、Model Validation、Nonlinear Regression等课程是很好的选择。这些课程提供了可直接应用于工作场所的实用技能,提高了员工分析数据和做出明智决策的能力。