筛选依据
主题必需的
语言必需的
在整个课程(说明和评估)中使用的语言。
了解产品必需的
级别必需的
课程长度必需的
技能必需的
字幕必需的
教师必需的
探索卷积神经网络课程目录
- 状态:新状态:免费试用
Pearson
您将获得的技能: Large Language Modeling, Deep Learning, Prompt Engineering, Image Analysis, PyTorch (Machine Learning Library), Tensorflow, LLM Application, Computer Vision, Responsible AI, Natural Language Processing, Generative AI, Artificial Neural Networks, Data Ethics, Multimodal Prompts, Artificial Intelligence and Machine Learning (AI/ML), Applied Machine Learning, Machine Learning Methods, Artificial Intelligence, Application Deployment, Time Series Analysis and Forecasting
- 状态:免费试用
DeepLearning.AI
您将获得的技能: Algorithm, PyTorch(机器学习库), 人工智能和机器学习(AI/ML), 计算机视觉, 功能工程, 人工神经网络, 张力流, Keras(神经网络库), 应用机器学习, 图像分析, 深度学习
- 状态:免费试用
您将获得的技能: 机器学习, 计算机视觉, 回归分析, Machine Learning 方法, 网络模型, 网络架构, 人工神经网络, 自然语言处理, 图像分析, 张力流, 深度学习, Keras(神经网络库)
- 状态:免费试用
DeepLearning.AI
您将获得的技能: 机器学习, 人工智能, MLOps(机器学习 Operator), PyTorch(机器学习库), 人工智能和机器学习(AI/ML), 监督学习, 数据驱动的决策制定, 文本挖掘, 计算机视觉, Python 程序设计, 应用机器学习, 人工神经网络, 调试, 图像分析, 性能调整, 自然语言处理, 功能工程, 深度学习, 张力流, Keras(神经网络库)
- 状态:免费试用
Johns Hopkins University
您将获得的技能: Responsible AI, Data Ethics, Artificial Neural Networks, Deep Learning, Machine Learning Algorithms, Reinforcement Learning, Generative AI, Debugging, Artificial Intelligence, Unsupervised Learning, Machine Learning, Computer Vision, Image Analysis, Artificial Intelligence and Machine Learning (AI/ML), Machine Learning Methods, Applied Machine Learning, Bayesian Statistics, Network Architecture, Linear Algebra, Markov Model
- 状态:免费试用
您将获得的技能: PyTorch(机器学习库), 机器学习, 计算机视觉, 监督学习, 网络架构, 人工神经网络, 深度学习
是什么让您今天来到 Coursera?
您将获得的技能: Tensorflow, Data Collection, Image Analysis, Artificial Neural Networks, Deep Learning, Computer Vision, Google Cloud Platform, Cloud Computing, Scientific Visualization
- 状态:新状态:免费试用
您将获得的技能: Tensorflow, Artificial Neural Networks, Keras (Neural Network Library), Deep Learning, Time Series Analysis and Forecasting, Image Analysis, Natural Language Processing, Computer Vision, Forecasting, Classification And Regression Tree (CART), Supervised Learning, Machine Learning, Text Mining, Predictive Analytics, NumPy, Network Architecture, Data Processing, Data Science
- 状态:新状态:免费试用
您将获得的技能: PyTorch (Machine Learning Library), Tensorflow, Natural Language Processing, Image Analysis, Deep Learning, Computer Vision, Artificial Neural Networks, Machine Learning Methods, Time Series Analysis and Forecasting, Forecasting, Network Architecture
- 状态:新状态:免费试用
您将获得的技能: Deep Learning, PyTorch (Machine Learning Library), Artificial Neural Networks, Artificial Intelligence and Machine Learning (AI/ML), Tensorflow, Large Language Modeling, Machine Learning, Python Programming, Algorithms, Network Architecture, Data Processing
- 状态:新状态:免费试用
您将获得的技能: Large Language Modeling, Prompt Engineering, Image Analysis, PyTorch (Machine Learning Library), Deep Learning, Tensorflow, LLM Application, Computer Vision, Responsible AI, Generative AI, Data Ethics, Multimodal Prompts, Applied Machine Learning, Natural Language Processing, Machine Learning Methods, Artificial Neural Networks, Artificial Intelligence, Application Deployment, Network Model, Performance Tuning
- 状态:免费试用
您将获得的技能: Artificial Intelligence and Machine Learning (AI/ML), Exploratory Data Analysis, Generative AI, Keras (Neural Network Library), NumPy, Data Processing, PyTorch (Machine Learning Library), Predictive Modeling, Matplotlib, Data Analysis, Generative Model Architectures, Development Environment, Pandas (Python Package), Image Analysis, Deep Learning, Classification And Regression Tree (CART), Artificial Neural Networks, Artificial Intelligence, Machine Learning, Data Science
总之,以下是 10 最受欢迎的 convolutional neural network 课程
- Learning Deep Learning: Pearson
- 卷积神经网络: DeepLearning.AI
- 使用 Keras 的深度学习和神经网络简介: IBM
- 深度学习: DeepLearning.AI
- Foundations of Neural Networks: Johns Hopkins University
- 使用 PyTorch 进行深度学习: IBM
- Classify Images with TensorFlow Convolutional Neural Networks: Google Cloud
- Deep Learning with TensorFlow: Packt
- Learning Deep Learning: Unit 2: Pearson
- Learning Deep Learning: Unit 1: Pearson