筛选依据
主题必需的
语言必需的
在整个课程(说明和评估)中使用的语言。
了解产品必需的
级别必需的
课程长度必需的
技能必需的
字幕必需的
教师必需的
探索 MLOps 课程目录
- 状态:免费试用
您将获得的技能: Feature Engineering, Data Ethics, Exploratory Data Analysis, Unsupervised Learning, Data Presentation, Tensorflow, Application Deployment, Dimensionality Reduction, MLOps (Machine Learning Operations), Probability Distribution, Apache Spark, Statistical Hypothesis Testing, Supervised Learning, Data Visualization Software, Data Pipelines, Design Thinking, Unit Testing, Data Science, Machine Learning, Python Programming
- 状态:免费试用
您将获得的技能: Data Pipelines, Dataflow, Google Cloud Platform, Real Time Data, Data Maintenance, Data Lakes, Data Storage, MLOps (Machine Learning Operations), Data Analysis, Data Warehousing, Data Processing, Extract, Transform, Load, Cloud Engineering, Data Infrastructure, Cloud Infrastructure, Apache Airflow, Cloud Storage, Big Data, Tensorflow, Unstructured Data
- 状态:预览
您将获得的技能: MLOps (Machine Learning Operations), Google Cloud Platform, DevOps, Application Lifecycle Management, Continuous Deployment, Application Deployment, Machine Learning, Applied Machine Learning, Continuous Integration, Automation, Data Management
- 状态:免费试用
Google Cloud
您将获得的技能: MLOps (Machine Learning Operations), Systems Design, Tensorflow, Hybrid Cloud Computing, Google Cloud Platform, Systems Architecture, Performance Tuning, Applied Machine Learning, Machine Learning, Distributed Computing, Scalability, Data Pipelines
- 状态:新状态:免费试用
Board Infinity
您将获得的技能: Responsible AI, MLOps (Machine Learning Operations), Artificial Intelligence and Machine Learning (AI/ML), Jenkins, CI/CD, Java, Continuous Deployment, Java Programming, Artificial Intelligence, Apache Spark, Applied Machine Learning, Decision Tree Learning, Deep Learning, Machine Learning, Fraud detection, Spring Boot, Natural Language Processing, Regression Analysis, Reinforcement Learning, Debugging
- 状态:免费试用
Duke University
您将获得的技能: MLOps(机器学习 Operator), Google 云端平台, 自然语言处理, 自动化, Flask(网络框架), 计算机视觉, 人工智能和机器学习(AI/ML), 持续交付, 应用编程接口 (API), 云应用, 云 API, 微软 Azure, 应用机器学习
- 状态:免费试用
您将获得的技能: Predictive Modeling, Responsible AI, Predictive Analytics, Machine Learning, Data Ethics, MLOps (Machine Learning Operations), Applied Machine Learning, Data-Driven Decision-Making, Statistical Modeling, Performance Measurement, Supervised Learning, Business Ethics, Decision Tree Learning, Artificial Intelligence and Machine Learning (AI/ML), Leadership and Management, Business Analytics, Data Science, Machine Learning Algorithms, Artificial Intelligence, Data Processing
- 状态:免费试用
您将获得的技能: Tensorflow, Keras (Neural Network Library), Google Cloud Platform, Data Pipelines, MLOps (Machine Learning Operations), Deep Learning, Artificial Neural Networks, Cloud Computing, Machine Learning, Data Cleansing, Python Programming, Data Transformation, Application Programming Interface (API)
- 状态:免费试用
Duke University
您将获得的技能: 云 Native 计算, Google 云端平台, 云计算, MLOps(机器学习 Operator), 基础设施即服务(IaaS), CI/CD, 应用程序部署, 持续交付, 微服务, 云平台, Devops, 应用机器学习, 分布式计算, 软件工程, 云基础设施, 云 API, 机器学习, 技术交流, 摘录, 敏捷软件开发
- 状态:新状态:免费试用
您将获得的技能: Data Management, Data Pipelines, Continuous Monitoring
- 状态:免费试用
Duke University
您将获得的技能: 数据管道, 数据科学, MLOps(机器学习 Operator), 系统架构, 人工智能和机器学习(AI/ML), 项目管理, 数据处理, 系统监控, 数据收集, 数据质量, 技术管理, 数据管理, Data Management, 功能工程, 系统设计, 技术解决方案, 机器学习, 技术设计, 应用机器学习, 软件开发生命周期, 数据清理
- 状态:免费
Coursera Project Network
您将获得的技能: MLOps (Machine Learning Operations), Continuous Deployment, Application Deployment, R Programming, Dashboard, Health Informatics, Continuous Monitoring, Predictive Modeling, Statistical Machine Learning, Machine Learning Methods, Feature Engineering, Docker (Software), Data Manipulation, Application Programming Interface (API)
总之,以下是 10 最受欢迎的 mlops 课程
- IBM AI Enterprise Workflow: IBM
- Preparing for Google Cloud Certification: Cloud Data Engineer: Google Cloud
- Machine Learning Operations (MLOps): Getting Started - 한국어: Google Cloud
- Production Machine Learning Systems: Google Cloud
- Java in Machine Learning: Board Infinity
- 云机器学习工程和 MLOps: Duke University
- Machine Learning Rock Star – the End-to-End Practice: SAS
- Build, Train and Deploy ML Models with Keras on Google Cloud: Google Cloud
- 大规模构建云计算解决方案: Duke University
- Azure ML: Designing and Preparing Machine Learning Solutions: Whizlabs