Coursera
GenAI Deployment & Governance 专项课程

只需 199 美元(原价 399 美元)即可通过 Coursera Plus 学习更高水平的技能。立即节省

Coursera

GenAI Deployment & Governance 专项课程

Enterprise GenAI Deployment & Governance. Build, deploy, monitor, and govern production-ready GenAI systems with enterprise-grade reliability.

Harshita Gulati
Hurix Digital
John Whitworth

位教师:Harshita Gulati

包含在 Coursera Plus

深入学习学科知识
中级 等级

推荐体验

4 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
深入学习学科知识
中级 等级

推荐体验

4 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度

您将学到什么

  • Deploy, orchestrate, and automate GenAI systems using MLOps best practices and cloud platforms

  • Design governance frameworks and monitoring systems ensuring responsible AI at enterprise scale

  • Optimize GenAI performance through data architecture and continuous validation pipelines

要了解的详细信息

可分享的证书

添加到您的领英档案

授课语言:英语(English)
最近已更新!

December 2025

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

精进特定领域的专业知识

  • 向大学和行业专家学习热门技能
  • 借助实践项目精通一门科目或一个工具
  • 培养对关键概念的深入理解
  • 通过 Coursera 获得职业证书

专业化 - 7门课程系列

您将学到什么

  • Performance monitoring is essential for maintaining AI system reliability and fairness across diverse user populations

  • Technical architecture decisions (fine-tuning vs RAG) require systematic evaluation of costs, capabilities, and maintenance requirements

  • Effective AI governance requires proactive policy creation, technical guardrails, and cross-functional collaboration to ensure responsible deployment

  • Sustainable AI operations depend on establishing measurable quality benchmarks and continuous feedback loops

您将获得的技能

类别:Risk Management
类别:Large Language Modeling
类别:Prompt Engineering
类别:Gap Analysis
类别:Data-Driven Decision-Making
类别:Performance Metric
类别:Performance Analysis
类别:AI Security
类别:Governance
类别:Model Evaluation
类别:Responsible AI
类别:System Monitoring
类别:Cost Benefit Analysis
类别:Content Performance Analysis
类别:Governance Risk Management and Compliance
类别:Retrieval-Augmented Generation
类别:Quality Assessment
类别:Cross-Functional Team Leadership
类别:Compliance Management
类别:Generative AI

您将学到什么

  • Proactive compatibility analysis prevents runtime failures and lowers operational overhead through dependency checks.

  • Data-driven release decisions synthesize test metrics, system performance, and business impact assessments

  • Automated deployment with canary releases and rollback mechanisms reduces production risk in continuous delivery.

  • Sustainable deployment relies on reproducible workflows that scale effectively across teams and environments.

您将获得的技能

类别:Regression Testing
类别:Cloud Deployment
类别:Continuous Delivery
类别:Application Performance Management
类别:MLOps (Machine Learning Operations)
类别:CI/CD
类别:System Requirements
类别:Dependency Analysis
类别:Site Reliability Engineering
类别:Verification And Validation
类别:Model Deployment
类别:Application Deployment
类别:AI Orchestration
类别:Continuous Deployment
类别:Data-Driven Decision-Making
类别:Generative AI
类别:Model Evaluation
类别:Release Management
类别:Kubernetes
类别:Software Technical Review

您将学到什么

  • Reliable MLOps depends on systematic diagnosis: performance issues are solved by log analysis and pipeline investigation, not guesswork.

  • Governance must be automated into deployment—responsible AI needs CI/CD checks for fairness, explainability, and safe rollbacks, not manual reviews.

  • Adaptive systems need intelligent automation—production models should monitor drift and trigger retraining automatically to stay accurate.

  • Operational excellence requires end-to-end visibility, strong monitoring, versioning and audit trails enable fast debugging and long-term reliability

您将获得的技能

类别:Continuous Monitoring
类别:Continuous Delivery
类别:Continuous Deployment
类别:Data Pipelines
类别:Model Evaluation
类别:CI/CD
类别:MLOps (Machine Learning Operations)
类别:Data Governance
类别:Model Deployment
类别:Responsible AI
类别:Continuous Integration
类别:Cloud Platforms
类别:Performance Analysis
类别:Automation
类别:Performance Tuning

您将学到什么

  • Effective alerting uses historical data to tune thresholds, reducing false alarms while catching issues before SLA breaches

  • Great performance monitoring unifies user metrics and backend KPIs to show how system health impacts user experience.

  • Modern observability relies on logs, metrics, and traces to assess health and diagnose issues in distributed AI systems.

  • Sustainable GenAI operations use data-driven monitoring to balance early detection with long-term operational efficiency.

您将获得的技能

类别:System Monitoring
类别:Event Monitoring
类别:Incident Management
类别:Dashboard
类别:Data-Driven Decision-Making
类别:Service Level Agreement
类别:MLOps (Machine Learning Operations)
类别:Service Level
类别:Statistical Methods
类别:Generative AI
类别:Real Time Data
类别:Continuous Monitoring
类别:Performance Tuning
类别:Business Metrics
类别:Application Performance Management

您将学到什么

  • Data lineage is key for AI reliability, helping quickly diagnose model performance drops and data quality issues.

  • Storage architecture affects costs and AI performance; evaluating access patterns and tiering ensures sustainable scaling.

  • Unified data processing reduces complexity by integrating streaming and batch workflows for real-time and analytical AI use.

  • Enterprise GenAI systems need proactive planning of data quality, cost, and platform integration to avoid technical debt.

您将获得的技能

类别:Dataflow
类别:Solution Architecture
类别:Dependency Analysis
类别:Data Integration
类别:Root Cause Analysis
类别:Failure Analysis
类别:Data Infrastructure
类别:Data Architecture
类别:Data Pipelines
类别:Generative AI
类别:Apache Kafka
类别:Data Quality
类别:Enterprise Architecture
类别:Performance Tuning
类别:Cloud Storage
类别:Data Storage
类别:Data Processing
Govern Your GenAI Data Safely

Govern Your GenAI Data Safely

第 6 门课程2小时

您将学到什么

  • Learners will be able to systematically analyze data access patterns to recommend role-based controls, evaluate organizational governance maturity ag

您将获得的技能

类别:Governance
类别:Data Management
类别:Data Governance
类别:Data Quality
类别:Data Security
类别:Quality Assurance and Control
类别:Benchmarking
类别:Role-Based Access Control (RBAC)
类别:Generative AI
类别:Responsible AI
类别:Data Access
类别:Identity and Access Management
类别:AI Security
类别:SQL
类别:Metadata Management

您将学到什么

  • Systematic metadata analysis maintains data quality and helps control storage costs in large-scale AI environments.

  • Effective data retention balances regulatory compliance, business requirements, and long-term cost optimization.

  • Automated data onboarding ensures consistency, quality, and scalability as enterprise data volumes increase.

  • Proactive data governance prevents downstream issues and accelerates AI development and deployment cycles

您将获得的技能

类别:Expense Management
类别:AI Enablement
类别:Extract, Transform, Load
类别:Scalability
类别:Data Management
类别:Data Maintenance
类别:MLOps (Machine Learning Operations)
类别:Automation
类别:Data Storage
类别:Data Quality
类别:Metadata Management
类别:Data Processing
类别:Compliance Management
类别:General Data Protection Regulation (GDPR)
类别:Data Storage Technologies
类别:Data Governance
类别:Data Architecture
类别:Data Validation
类别:Data Integration

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

Harshita Gulati
Coursera
1 门课程13 名学生
Hurix Digital
Coursera
101 门课程2,551 名学生
John Whitworth
Coursera
0 门课程0 名学生

提供方

Coursera

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题