University of Colorado Boulder
Data Analysis with Python 专项课程
University of Colorado Boulder

Data Analysis with Python 专项课程

Launch your career in Data Science & Data Analysis. By mastering the skills and techniques covered in these courses, students will be better equipped to handle the challenges of real-world data analysis.

Di Wu

位教师:Di Wu

2,187 人已注册

包含在 Coursera Plus

深入学习学科知识
4.8

(15 条评论)

中级 等级

推荐体验

2 月 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
深入学习学科知识
4.8

(15 条评论)

中级 等级

推荐体验

2 月 完成
在 10 小时 一周
灵活的计划
自行安排学习进度

您将学到什么

  • Describe and define the fundamental concepts and techniques used in Data Analysis.  Identify the appropriate techniques to apply.

  • Compare and contrast different Data Analysis techniques, including Classification, Regression, Clustering, Dimension Reduction, and Association Rules

  • Design and implement effective Data Analysis workflows, including data preprocessing, feature selection, and model selection

要了解的详细信息

可分享的证书

添加到您的领英档案

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

精进特定领域的专业知识

  • 向大学和行业专家学习热门技能
  • 借助实践项目精通一门科目或一个工具
  • 培养对关键概念的深入理解
  • 通过 University of Colorado Boulder 获得职业证书

专业化 - 5门课程系列

Classification Analysis

Classification Analysis

第 1 门课程38小时

您将学到什么

  • Understand the concept and significance of classification as a supervised learning method.

  • Identify and describe different classifiers, apply each classifier to perform binary and multiclass classification tasks on diverse datasets.

  • Evaluate the performance of classifiers, select and fine-tune classifiers based on dataset characteristics and learning requirements.

您将获得的技能

类别:Machine Learning Algorithms
类别:Classification And Regression Tree (CART)
类别:Machine Learning
类别:Bayesian Statistics
类别:Probability & Statistics
类别:Supervised Learning
类别:Feature Engineering
类别:Predictive Modeling
类别:Data Analysis
类别:Data Science
类别:Data Mining
Regression Analysis

Regression Analysis

第 2 门课程40小时

您将学到什么

  • Understand the principles and significance of regression analysis in supervised learning.

  • Implement cross-validation methods to assess model performance and optimize hyperparameters.

  • Comprehend ensemble methods (bagging, boosting, and stacking) and their role in enhancing regression model accuracy.

您将获得的技能

类别:Regression Analysis
类别:Machine Learning Methods
类别:Predictive Modeling
类别:Data Analysis
类别:Feature Engineering
类别:Verification And Validation
类别:Supervised Learning
类别:Statistical Analysis
类别:Exploratory Data Analysis
类别:Statistical Modeling
Clustering Analysis

Clustering Analysis

第 3 门课程37小时

您将学到什么

  • Understand the principles and significance of unsupervised learning, particularly clustering and dimension reduction.

  • Apply clustering techniques to diverse datasets for pattern discovery and data exploration.

  • Implement Principal Component Analysis (PCA) for dimension reduction and interpret the reduced feature space.

您将获得的技能

类别:Unsupervised Learning
类别:Dimensionality Reduction
类别:Machine Learning
类别:Machine Learning Methods
类别:Machine Learning Algorithms
类别:Exploratory Data Analysis
类别:Applied Machine Learning
类别:Statistical Machine Learning
类别:Data Analysis
类别:Data Mining
Association Rules Analysis

Association Rules Analysis

第 4 门课程22小时

您将学到什么

  • Understand the principles and significance of unsupervised learning methods, specifically association rules and outlier detection

  • Grasp the concepts and applications of frequent patterns and association rules in discovering interesting relationships between items.

  • Apply various outlier detection methods, including statistical and distance-based approaches, to identify anomalous data points.

您将获得的技能

类别:Anomaly Detection
类别:Unsupervised Learning
类别:Algorithms
类别:Data Mining
类别:Data Analysis
类别:Data Manipulation
类别:Applied Machine Learning
类别:Feature Engineering
类别:Exploratory Data Analysis
Data Analysis with Python Project

Data Analysis with Python Project

第 5 门课程18小时

您将学到什么

  • Define the scope and direction of a data analysis project, identifying appropriate techniques and methodologies for achieving project objectives.

  • Apply various classification and regression algorithms and implement cross-validation and ensemble techniques to enhance the performance of models.

  • Apply various clustering, dimension reduction association rule mining, and outlier detection algorithms for unsupervised learning models.

您将获得的技能

类别:Anomaly Detection
类别:Scikit Learn (Machine Learning Library)
类别:Regression Analysis
类别:Supervised Learning
类别:Data Mining
类别:Unsupervised Learning
类别:Dimensionality Reduction
类别:Classification And Regression Tree (CART)
类别:Analytics
类别:Exploratory Data Analysis
类别:Machine Learning Algorithms
类别:Predictive Modeling
类别:Statistical Analysis
类别:Data Analysis
类别:Machine Learning
类别:Project Planning

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

Di Wu
University of Colorado Boulder
21 门课程53,729 名学生

提供方

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题