Coursera
Building Trustworthy AI 专项课程

只需 199 美元(原价 399 美元)即可通过 Coursera Plus 学习更高水平的技能。立即节省

Coursera

Building Trustworthy AI 专项课程

Build Secure, Ethical, and Governed AI Systems. Learn AI security, ethics, and governance to deploy trustworthy systems in production.

Starweaver
Ritesh Vajariya
Brian Newman

位教师:Starweaver

包含在 Coursera Plus

深入学习学科知识
中级 等级

推荐体验

4 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
深入学习学科知识
中级 等级

推荐体验

4 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度

您将学到什么

  • Identify and mitigate AI-specific security threats across the MLOps lifecycle using industry frameworks like MITRE ATLAS

  • Design and implement ethical AI systems with explainability, fairness metrics, and comprehensive governance frameworks

  • Create enterprise-grade risk management and monitoring systems for continuous AI validation and regulatory compliance

您将获得的技能

要了解的详细信息

可分享的证书

添加到您的领英档案

授课语言:英语(English)
最近已更新!

January 2026

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

精进特定领域的专业知识

  • 向大学和行业专家学习热门技能
  • 借助实践项目精通一门科目或一个工具
  • 培养对关键概念的深入理解
  • 通过 Coursera 获得职业证书

专业化 - 10门课程系列

您将学到什么

  • Identify and classify various classes of attacks targeting AI systems.

  • Analyze the AI/ML development lifecycle to pinpoint stages vulnerable to attack.

  • Apply threat mitigation strategies and security controls to protect AI systems in development and production.

您将获得的技能

类别:AI Security
类别:Threat Modeling
类别:MITRE ATT&CK Framework
类别:Security Engineering
类别:MLOps (Machine Learning Operations)
类别:Application Security
类别:Vulnerability Assessments
类别:Responsible AI
类别:Security Controls
类别:Cybersecurity
类别:Model Deployment
类别:Threat Detection
类别:Artificial Intelligence and Machine Learning (AI/ML)
类别:Application Lifecycle Management
类别:Data Security

您将学到什么

  • Analyze and evaluate AI inference threat models, identifying attack vectors and vulnerabilities in machine learning systems.

  • Design and implement comprehensive security test cases for AI systems including unit tests, integration tests, and adversarial robustness testing.

  • Integrate AI security testing into CI/CD pipelines for continuous security validation and monitoring of production deployments.

您将获得的技能

类别:AI Security
类别:Threat Modeling
类别:Security Testing
类别:Continuous Integration
类别:Prompt Engineering
类别:DevOps
类别:Application Security
类别:Unit Testing
类别:MLOps (Machine Learning Operations)
类别:MITRE ATT&CK Framework
类别:Test Case
类别:DevSecOps
类别:Secure Coding
类别:Threat Detection
类别:CI/CD
类别:Integration Testing
类别:Scripting
类别:Continuous Monitoring
类别:System Monitoring
Document and Evaluate AI Ethics

Document and Evaluate AI Ethics

第 3 门课程3小时

您将学到什么

  • Create comprehensive documentation and conduct ethical evaluations of large language model systems to ensure responsible AI deployment.

您将获得的技能

类别:Auditing
类别:Model Evaluation
类别:Accountability
类别:Data Quality
类别:Compliance Auditing
类别:Mitigation
类别:Compliance Management
类别:Business Ethics
类别:Case Studies
类别:Responsible AI
类别:Technical Documentation
类别:MLOps (Machine Learning Operations)
类别:Ethical Standards And Conduct
类别:Model Deployment
类别:Project Documentation
类别:Data Ethics

您将学到什么

  • Ethical AI needs proactive bias measurement and fairness checks across demographics to prevent reinforcing societal inequalities.

  • AI success relies on mapping technical initiatives to business goals, continuously assessing ROI and feasibility.

  • Scalable AI operations require governance structures, best practices, clear accountability, and cross-functional collaboration

  • Responsible AI deployment balances innovation with ethics using technical guardrails and evolving organizational frameworks

您将获得的技能

类别:Governance
类别:Organizational Structure
类别:Strategic Prioritization
类别:Strategic Leadership
类别:Enterprise Architecture
类别:Technology Roadmaps
类别:Artificial Intelligence and Machine Learning (AI/ML)
类别:Cross-Functional Collaboration
类别:Artificial Intelligence
类别:Risk Analysis
类别:Business Risk Management
类别:Business Ethics
类别:Responsible AI
类别:AI Enablement
类别:Organizational Strategy
类别:Data Governance
类别:Scalability
类别:Data Ethics
类别:Decision Making

您将学到什么

  • Performance monitoring is essential for maintaining AI system reliability and fairness across diverse user populations

  • Technical architecture decisions (fine-tuning vs RAG) require systematic evaluation of costs, capabilities, and maintenance requirements

  • Effective AI governance requires proactive policy creation, technical guardrails, and cross-functional collaboration to ensure responsible deployment

  • Sustainable AI operations depend on establishing measurable quality benchmarks and continuous feedback loops

您将获得的技能

类别:Responsible AI
类别:Governance
类别:Prompt Engineering
类别:Generative AI
类别:Data-Driven Decision-Making
类别:Large Language Modeling
类别:Quality Assessment
类别:Compliance Management
类别:Performance Analysis
类别:Performance Metric
类别:Content Performance Analysis
类别:AI Security
类别:Cross-Functional Team Leadership
类别:Retrieval-Augmented Generation
类别:System Monitoring
类别:Gap Analysis
类别:Cost Benefit Analysis
类别:Continuous Monitoring
类别:Governance Risk Management and Compliance
类别:Risk Management

您将学到什么

  • Learners will apply reinforcement learning to design and validate reward functions while analyzing ethical and societal implications of AI decisions.

您将获得的技能

类别:Algorithms
类别:Due Diligence
类别:Policy Development
类别:Policy Analysis
类别:Regulatory Compliance
类别:Risk Analysis
类别:Artificial Intelligence and Machine Learning (AI/ML)
类别:Reinforcement Learning
Evaluate and Apply Ethical AI Models

Evaluate and Apply Ethical AI Models

第 7 门课程1小时

您将学到什么

  • Cross-modal evaluation requires specialized metrics that assess semantic alignment and joint reasoning capabilities across different data modalities

  • Ethical AI assessment is a systematic process involving quantitative bias measurement and interpretability analysis using standardized frameworks

  • Enterprise AI deployment success depends on balancing performance optimization with ethical governance and continuous monitoring

  • Model interpretability through LIME and SHAP analysis provides transparency essential for responsible AI system deployment

您将获得的技能

类别:Model Deployment
类别:Data Ethics
类别:Multimodal Prompts
类别:Model Evaluation
类别:AI Enablement
类别:Generative AI
类别:Governance
类别:Artificial Intelligence and Machine Learning (AI/ML)
类别:Responsible AI
Responsible AI: Transparency & Ethics

Responsible AI: Transparency & Ethics

第 8 门课程3小时

您将学到什么

  • Identify common sources of bias in AI systems and apply tools to assess and mitigate them.

  • Implement explainability methods, such as SHAP and LIME, to interpret and effectively communicate model behavior.

  • Develop a responsible AI checklist aligned with transparency and fairness principles and apply it to AI projects to ensure ethical compliance.

  • Evaluate AI projects for potential ethical risks and ensure alignment with compliance frameworks, such as the NIST AI RMF.

您将获得的技能

类别:Ethical Standards And Conduct
类别:Responsible AI
类别:Model Evaluation
类别:Risk Mitigation
类别:Compliance Management
类别:Auditing
类别:Mitigation
类别:Governance
类别:OpenAI
类别:Data Ethics
类别:Artificial Intelligence
AI Model Risk Management

AI Model Risk Management

第 9 门课程1小时

您将学到什么

您将获得的技能

类别:Responsible AI
类别:Compliance Management
类别:Governance Risk Management and Compliance
类别:AI Security
类别:Governance
类别:Risk Analysis
类别:Compliance Auditing
类别:Auditing
类别:Gap Analysis
类别:Process Validation
类别:Risk Management
类别:Data Validation
类别:Key Performance Indicators (KPIs)
类别:Risk Control
类别:Verification And Validation
类别:Model Evaluation
类别:Regulatory Requirements
类别:Risk Mitigation
Govern Your GenAI Data Safely

Govern Your GenAI Data Safely

第 10 门课程2小时

您将学到什么

  • Effective RBAC uses real usage patterns, not assumptions, to ensure access controls match actual workflows and security needs.

  • Governance maturity assessment with frameworks like DAMA-DMBOK provides benchmarks to guide progress and investment decisions.

  • Sustainable data stewardship succeeds with clear ownership, quality standards, and documented procedures that enable accountability .

  • GenAI data governance balances rapid innovation with enterprise security and compliance requirements for responsible adoption .

您将获得的技能

类别:Data Governance
类别:Compliance Management
类别:Data Management
类别:Identity and Access Management
类别:Responsible AI
类别:Benchmarking
类别:Data Quality
类别:Quality Assurance and Control
类别:SQL
类别:Data Access
类别:Governance
类别:Role-Based Access Control (RBAC)
类别:AI Security
类别:Generative AI
类别:Data Security

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

Starweaver
Coursera
520 门课程941,364 名学生
Ritesh Vajariya
Coursera
24 门课程12,389 名学生
Brian Newman
Coursera
5 门课程1,121 名学生

提供方

Coursera

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题