Coursera
Build Next-Gen LLM Apps with LangChain & LangGraph 专项课程

以 199 美元(原价 399 美元)购买一年 Coursera Plus,享受无限增长。立即节省

Coursera

Build Next-Gen LLM Apps with LangChain & LangGraph 专项课程

Build Production LLM Apps with LangChain. Deploy scalable, secure LLM applications from development to production with enterprise-grade tools

Caio Avelino
Starweaver
Karlis Zars

位教师:Caio Avelino

包含在 Coursera Plus

深入学习学科知识
中级 等级

推荐体验

4 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
深入学习学科知识
中级 等级

推荐体验

4 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度

您将学到什么

  • Build and deploy production-grade LLM applications using LangChain, microservices architecture, and enterprise security controls.

  • Implement fine-tuning, embeddings validation, and performance optimization to achieve 99.9% uptime and 90% cost reduction.

  • Design monitoring systems, chaos testing, and ROI frameworks that connect LLM performance metrics to business value.

要了解的详细信息

可分享的证书

添加到您的领英档案

授课语言:英语(English)
最近已更新!

December 2025

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

精进特定领域的专业知识

  • 向大学和行业专家学习热门技能
  • 借助实践项目精通一门科目或一个工具
  • 培养对关键概念的深入理解
  • 通过 Coursera 获得职业证书

专业化 - 11门课程系列

您将学到什么

  • Construct modular LLM chains using LangChain's core components (prompts, models, and output parsers) to replace hardcoded API calls.

  • Apply systematic refactoring methodology to transform existing LLM scripts into maintainable LangChain workflows with proper error handling.

  • Implement production-ready patterns for common LLM use cases including Q&A systems, summarization pipelines, and data extraction workflows.

您将获得的技能

类别:Retrieval-Augmented Generation
类别:Scalability
类别:LLM Application
类别:System Monitoring
类别:Data Pipelines
类别:Prompt Engineering
类别:Prompt Patterns
类别:Cost Reduction
类别:Large Language Modeling
类别:Model Deployment
类别:Unstructured Data
类别:Text Mining
类别:AI Workflows
类别:Software Design Patterns
类别:Maintainability
类别:LangChain
类别:Vector Databases
类别:Embeddings

您将学到什么

  • Optimize LLM behavior using structured prompting, role assignment, and controlled output formatting.

  • Design scalable middleware to manage API requests, rate limits, caching, and token budgets for efficient LLM apps.

  • Create intuitive, user-centered interfaces that integrate feedback loops to continuously improve model responses and user trust.

您将获得的技能

类别:OpenAI API
类别:LLM Application
类别:Middleware
类别:UI/UX Research
类别:Frontend Integration

您将学到什么

  • Analyze AI workloads to define logical microservice boundaries and implement modular LangChain components communicating via gRPC.

  • Apply containerization and orchestration using Docker, ECR, K8s to deploy, scale, and monitor LangChain services with health checks and telemetry.

  • Evaluate and strengthen resilience by implementing OpenTelemetry tracing, Prometheus metrics, and chaos testing to measure and improve recovery.

您将获得的技能

类别:LLM Application
类别:Docker (Software)
类别:Kubernetes
类别:System Monitoring
类别:API Design
类别:Large Language Modeling
类别:Performance Testing
类别:Containerization
类别:Microservices
类别:MLOps (Machine Learning Operations)
类别:Grafana
类别:Cloud Deployment
类别:Application Deployment
类别:Prometheus (Software)
类别:Scalability
类别:LangChain
Automate & Secure LLM Deployments

Automate & Secure LLM Deployments

第 4 门课程4小时

您将学到什么

  • Design automated CI/CD pipelines for LLM deployments using containerization and infrastructure as code.

  • Apply security best practices including API protection, prompt injection prevention, and compliance frameworks.

  • Configure production monitoring, auto-scaling, and cost optimization for enterprise LLM systems.

您将获得的技能

类别:Cloud Deployment
类别:Performance Testing
类别:Enterprise Security
类别:Amazon CloudWatch
类别:System Monitoring
类别:Docker (Software)
类别:DevSecOps
类别:CI/CD
类别:DevOps
类别:Infrastructure as Code (IaC)
类别:Cloud Management
类别:LLM Application

您将学到什么

  • Apply decoding strategies (e.g., temperature, top-k, top-p, beam search) to control model outputs for quality, diversity, and relevance.

  • Evaluate AI-generated text using automated metrics and frameworks to systematically assess fluency, coherence, and factual accuracy.

  • Implement parameter-efficient fine-tuning (PEFT) techniques to create domain-adapted foundation models while balancing cost-performance trade-offs.

您将获得的技能

类别:Artificial Intelligence and Machine Learning (AI/ML)
类别:Analysis
类别:Model Based Systems Engineering
类别:Transfer Learning
类别:AI Personalization
类别:Model Evaluation
类别:Model Deployment
类别:Program Evaluation
类别:AI Product Strategy
类别:Large Language Modeling
类别:Performance Tuning
类别:MLOps (Machine Learning Operations)
类别:Generative AI
类别:Hugging Face
类别:Applied Machine Learning
类别:Responsible AI

您将学到什么

  • Optimize LLM behavior using structured prompting and self-checks to reduce variance and errors.

  • Design scalable middleware to manage API requests, retries, caching, and token budgets for performance targets.

  • Build user-centered interfaces that collect feedback and improve LLM accuracy and user trust.

您将获得的技能

类别:Performance Testing
类别:Tool Calling
类别:Scalability
类别:A/B Testing
类别:LLM Application
类别:Performance Tuning
类别:Retrieval-Augmented Generation
类别:Model Evaluation
类别:API Design
类别:Application Performance Management
类别:Prompt Engineering
类别:OpenAI API
类别:Responsible AI

您将学到什么

  • Apply sentence-transformers to embed documents and validate recall using FAISS vector indices and systematic retrieval tests.

  • Diagnose embedding issues by visualizing with UMAP, spotting anomalies, and cleaning data via cluster analysis workflows.

  • Evaluate embedding models on cost, latency, and accuracy to recommend the best candidates for production deployment.

您将获得的技能

类别:Data Quality
类别:Data Manipulation
类别:Model Evaluation
类别:System Monitoring
类别:Data Validation
类别:Embeddings
类别:Unsupervised Learning
类别:MLOps (Machine Learning Operations)
类别:E-Commerce
类别:LLM Application
类别:Cost Reduction
类别:Model Deployment
类别:Data Cleansing
类别:Verification And Validation
类别:Vector Databases
类别:Semantic Web
类别:Legal Technology
类别:Benchmarking
类别:Anomaly Detection
类别:Dimensionality Reduction

您将学到什么

  • Analyze LLM architectures and foundation models for specific use cases.

  • Implement fine-tuning techniques using industry-standard tools and frameworks.

  • Deploy LLM models in production environments with security and optimization.

您将获得的技能

类别:Model Deployment
类别:Transfer Learning
类别:Application Security
类别:Prompt Engineering
类别:Model Evaluation
类别:Scalability
类别:Cloud Deployment
类别:Large Language Modeling
类别:MLOps (Machine Learning Operations)
类别:API Design
类别:LLM Application
类别:System Monitoring
类别:AI Security
类别:Applied Machine Learning
类别:Artificial Intelligence
类别:Hugging Face
类别:Performance Tuning

您将学到什么

  • Design scalable LLM API architectures using microservices patterns, load balancing, and caching for high-throughput applications.

  • Implement enterprise security including authentication, authorization, rate limiting, and prompt injection protection.

  • Deploy monitoring systems and optimize performance achieving 99.9% uptime and sub-100ms response times.

您将获得的技能

类别:API Design
类别:AI Security
类别:Redis
类别:Cloud Management
类别:Python Programming
类别:MLOps (Machine Learning Operations)
类别:Network Monitoring
类别:Amazon CloudWatch
类别:Incident Response
类别:Application Performance Management
类别:Cloud API
类别:Load Balancing
类别:Machine Learning
类别:Security Controls
类别:Performance Testing
类别:GitHub

您将学到什么

  • Evaluate AI use cases by applying key Responsible AI principles such as fairness, transparency, and accountability.

  • Identify and document potential risks and biases across data, models, and user interactions using structured ethical design tools.

  • Develop and communicate stakeholder-ready presentations and documentation that clearly articulate Responsible AI design decisions.

您将获得的技能

类别:Design
类别:Technical Communication
类别:Risk Mitigation
类别:Ethical Standards And Conduct
类别:Stakeholder Analysis
类别:Case Studies
类别:Accountability
类别:Data Ethics
类别:Risk Management
类别:Artificial Intelligence
类别:Responsible AI
类别:Governance
类别:Stakeholder Communications
类别:Project Documentation
类别:Presentations
类别:Data Storytelling
Measure ML Impact & Business Value

Measure ML Impact & Business Value

第 11 门课程4小时

您将学到什么

  • Map model metrics to business metrics, and define baselines, counterfactuals, and a measurement plan.

  • Design experiments, compute lift and confidence intervals, and plan guardrails.

  • Quantify ROI and risk, build an impact dashboard, and craft an executive story with clear next steps.

您将获得的技能

类别:Performance Analysis
类别:Business Metrics
类别:Business Valuation
类别:Analysis
类别:Power Electronics
类别:Machine Learning
类别:Dashboard
类别:Experimentation
类别:Model Evaluation
类别:Stakeholder Communications
类别:Product Management
类别:Financial Analysis
类别:Business
类别:Return On Investment
类别:A/B Testing
类别:Sample Size Determination
类别:Performance Measurement
类别:Data Storytelling
类别:Key Performance Indicators (KPIs)

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

Caio Avelino
7 门课程7,031 名学生
Starweaver
Coursera
474 门课程912,887 名学生
Karlis Zars
32 门课程52,366 名学生

提供方

Coursera

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题