In this 2-hour long guided-project course, you will load a pretrained state of the art model CNN and you will train in PyTorch to classify radio signals with input as spectogram images. The data that you will use, consists of spectogram images (spectogram is a representation of audio signals) and there are targets such as ( Squiggle, Noises, Narrowband, etc). Furthermore, you will apply spectogram augmentation for classification task to augment spectogram images. Moreover, you are going to create train and evaluator function which will be helpful to write training loop. Lastly, you will use best trained model to classify radio signals given any 2D Spectogram of radio signal input images.

您将学到什么
Load pretrained state of the art model
Create train and eval function to write the training loop
Understand Spectogram Augmentations
您将练习的技能
要了解的详细信息

添加到您的领英档案
仅桌面可用
了解顶级公司的员工如何掌握热门技能

在 2 小时内学习、练习并应用岗位必备技能
- 接受行业专家的培训
- 获得解决实训工作任务的实践经验
- 使用最新的工具和技术来建立信心

关于此指导项目
分步进行学习
在与您的工作区一起在分屏中播放的视频中,您的授课教师将指导您完成每个步骤:
Introduction
Configurations
Declare Spec Augmentations
Create Custom Dataset
Load Dataset into Batches
Create Model
Create Train and eval function
Training Loop
推荐体验
Prior programming experience in Python and basic pytorch. Theoretical knowledge of Convolutional Neural Network and Training process (Optimization)
8个项目图片
位教师

提供方
学习方式
基于技能的实践学习
通过完成与工作相关的任务来练习新技能。
专家指导
使用独特的并排界面,按照预先录制的专家视频操作。
无需下载或安装
在预配置的云工作空间中访问所需的工具和资源。
仅在台式计算机上可用
此指导项目专为具有可靠互联网连接的笔记本电脑或台式计算机而设计,而不是移动设备。
人们为什么选择 Coursera 来帮助自己实现职业发展




学生评论
12 条评论
- 5 stars
50%
- 4 stars
16.66%
- 3 stars
0%
- 2 stars
16.66%
- 1 star
16.66%
显示 3/12 个
已于 Nov 6, 2022审阅
It was a wonderful project which not only covers a few concepts of signal processing but also sheds light on transfer learning with Pytorch.
已于 Jul 23, 2024审阅
Nice guided lab, however there are some content issues: 1. The last video is missing; 2. Some problem with certificates on loading the model.
您可能还喜欢
常见问题
购买指导项目后,您将获得完成指导项目所需的一切,包括通过 Web 浏览器访问云桌面工作空间,工作空间中包含您需要了解的文件和软件,以及特定领域的专家提供的分步视频说明。
由于您的工作空间包含适合笔记本电脑或台式计算机使用的云桌面,因此指导项目不在移动设备上提供。
指导项目授课教师是特定领域的专家,他们在项目的技能、工具或领域方面经验丰富,并且热衷于分享自己的知识以影响全球数百万的学生。







