IBM
IBM Generative AI Engineering 专业证书
IBM

IBM Generative AI Engineering 专业证书

Develop job-ready gen AI skills employers need. Build highly sought-after gen AI engineering skills and practical experience in just 6 months. No prior experience required.

IBM Skills Network Team
Sina Nazeri
Abhishek Gagneja

位教师:IBM Skills Network Team

75,640 人已注册

包含在 Coursera Plus

获得职业证书,展示您的专业知识
4.7

(2,821 条评论)

初级 等级

推荐体验

6 月 完成
在 6 小时 一周
灵活的计划
自行安排学习进度
获得职业证书,展示您的专业知识
4.7

(2,821 条评论)

初级 等级

推荐体验

6 月 完成
在 6 小时 一周
灵活的计划
自行安排学习进度

您将学到什么

  • Job-ready skills employers are crying out for in gen AI, machine learning, deep learning, NLP apps, and large language models in just 6 months.

  • Build and deploy generative AI applications, agents and chatbots using Python libraries like Flask, SciPy and ScikitLearn, Keras, and PyTorch.

  • Key gen AI architectures and NLP models, and how to apply techniques like prompt engineering, model training, and fine-tuning.

  • Apply transformers like BERT and LLMs like GPT for NLP tasks, with frameworks like RAG and LangChain.

要了解的详细信息

可分享的证书

添加到您的领英档案

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

借助热门技能来开拓您的职业生涯

  • 接受 IBM 的专业级培训
  • 展现您对技术的精通程度
  • 通过 IBM 获得雇主认可的证书

专业认证 - 16门课程系列

您将学到什么

  • Explain the fundamental concepts and applications of AI in various domains.

  • Describe the core principles of machine learning, deep learning, and neural networks, and apply them to real-world scenarios.

  • Analyze the role of generative AI in transforming business operations, identifying opportunities for innovation and process improvement.

  • Design a generative AI solution for an organizational challenge, integrating ethical considerations.

您将获得的技能

类别:Natural Language Processing
类别:Generative AI
类别:Responsible AI
类别:LLM Application
类别:Market Opportunities

您将学到什么

  • Describe generative AI and distinguish it from discriminative AI.

  • Describe the capabilities of generative AI and its use cases in the real world.

  • Identify the applications of generative AI in different sectors and industries.

  • Explore common generative AI models and tools for text, code, image, audio, and video generation.

您将获得的技能

类别:Generative AI
类别:ChatGPT
类别:Responsible AI
类别:Machine Learning
类别:Artificial Intelligence and Machine Learning (AI/ML)

您将学到什么

  • Explain the concept and relevance of prompt engineering in generative AI models. 

  • Apply the best practices for creating prompts.

  • Assess commonly used tools for prompt engineering.

  • Apply common prompt engineering techniques and approaches for writing effective prompts.

您将获得的技能

类别:Prompt Patterns
类别:Prompt Engineering
类别:Generative AI
类别:Image Quality
类别:ChatGPT

您将学到什么

  • Develop a foundational understanding of Python programming by learning basic syntax, data types, expressions, variables, and string operations.

  • Apply Python programming logic using data structures, conditions and branching, loops, functions, exception handling, objects, and classes.

  • Demonstrate proficiency in using Python libraries such as Pandas and Numpy and developing code using Jupyter Notebooks.

  • Access and extract web-based data by working with REST APIs using requests and performing web scraping with BeautifulSoup.

您将获得的技能

类别:Python Programming
类别:Pandas (Python Package)
类别:Data Structures
类别:Web Scraping
类别:NumPy
类别:Data Manipulation
类别:Application Programming Interface (API)
类别:Object Oriented Programming (OOP)
类别:JSON
类别:Scripting
类别:Data Processing
类别:Data Analysis
类别:Data Import/Export
类别:Computer Programming
类别:Programming Principles
类别:Restful API
类别:Automation
类别:Jupyter

您将学到什么

  • Describe the steps and processes involved in creating a Python application including the application development lifecycle

  • Create Python modules, run unit tests, and package applications while ensuring the PEP8 coding best practices

  • Build and deploy web applications using Flask, including routing, error handling, and CRUD operations.

  • Create and deploy an AI-based application onto a web server using IBM Watson AI Libraries and Flask

您将获得的技能

类别:Restful API
类别:Application Programming Interface (API)
类别:Python Programming
类别:Unit Testing
类别:Flask (Web Framework)
类别:Web Applications
类别:Integrated Development Environments
类别:Application Deployment
类别:Artificial Intelligence
类别:Software Development Life Cycle
类别:Programming Principles

您将学到什么

  • Explain the core concepts of generative AI, including large language models, speech technologies, and platforms such as IBM watsonX, and Hugging Face

  • Build generative AI-powered applications and chatbots using LLMs, retrieval-augmented generation(RAG), and foundational Python frameworks

  • Integrate speech-to-text (STT) and text-to-speech (TTS) technologies to enable voice interfaces in generative AI applications

  • Develop web-based AI applications using Python libraries, such as Flask and Gradio, along with basic front-end tools like HTML, CSS, and JavaScript

您将获得的技能

类别:Generative AI
类别:Flask (Web Framework)
类别:LLM Application
类别:Natural Language Processing
类别:LangChain
类别:Front-End Web Development
类别:Application Development
类别:Web Applications
类别:Back-End Web Development
类别:Prompt Engineering
类别:OpenAI
类别:Web Development
类别:Python Programming
Data Analysis with Python

Data Analysis with Python

第 7 门课程16小时

您将学到什么

  • Construct Python programs to clean and prepare data for analysis by addressing missing values, formatting inconsistencies, normalization, and binning

  • Analyze real-world datasets through exploratory data analysis (EDA) using libraries such as Pandas, NumPy, and SciPy to uncover patterns and insights

  • Apply data operation techniques using dataframes to organize, summarize, and interpret data distributions, correlation analysis, and data pipelines

  • Develop and evaluate regression models using Scikit-learn, and use these models to generate predictions and support data-driven decision-making

您将获得的技能

类别:Regression Analysis
类别:Pandas (Python Package)
类别:Scikit Learn (Machine Learning Library)
类别:NumPy
类别:Data Cleansing
类别:Exploratory Data Analysis
类别:Predictive Modeling
类别:Data Wrangling
类别:Data Transformation
类别:Data Manipulation
类别:Data Import/Export
类别:Data Analysis
类别:Data Pipelines
类别:Data Visualization
类别:Feature Engineering
类别:Statistical Analysis
类别:Python Programming
类别:Data-Driven Decision-Making
类别:Matplotlib
Machine Learning with Python

Machine Learning with Python

第 8 门课程20小时

您将学到什么

  • Explain key concepts, tools, and roles involved in machine learning, including supervised and unsupervised learning techniques.

  • Apply core machine learning algorithms such as regression, classification, clustering, and dimensionality reduction using Python and scikit-learn.

  • Evaluate model performance using appropriate metrics, validation strategies, and optimization techniques.

  • Build and assess end-to-end machine learning solutions on real-world datasets through hands-on labs, projects, and practical evaluations.

您将获得的技能

类别:Regression Analysis
类别:Machine Learning
类别:Supervised Learning
类别:Dimensionality Reduction
类别:Scikit Learn (Machine Learning Library)
类别:Classification And Regression Tree (CART)
类别:Applied Machine Learning
类别:Unsupervised Learning
类别:Decision Tree Learning
类别:Feature Engineering
类别:Statistical Modeling
类别:Predictive Modeling

您将学到什么

  • Describe the foundational concepts of deep learning, neurons, and artificial neural networks to solve real-world problems

  • Explain the core concepts and components of neural networks and the challenges of training deep networks

  • Build deep learning models for regression and classification using the Keras library, interpreting model performance metrics effectively.

  • Design advanced architectures, such as CNNs, RNNs, and transformers, for solving specific problems like image classification and language modeling

您将获得的技能

类别:Deep Learning
类别:Keras (Neural Network Library)
类别:Artificial Neural Networks
类别:Tensorflow
类别:Network Architecture
类别:Machine Learning
类别:Natural Language Processing
类别:Regression Analysis
类别:Network Model
类别:Image Analysis
类别:Computer Vision
类别:Machine Learning Methods

您将学到什么

  • Differentiate between generative AI architectures and models, such as RNNs, transformers, VAEs, GANs, and diffusion models

  • Describe how LLMs, such as GPT, BERT, BART, and T5, are applied in natural language processing tasks

  • Implement tokenization to preprocess raw text using NLP libraries like NLTK, spaCy, BertTokenizer, and XLNetTokenizer

  • Create an NLP data loader in PyTorch that handles tokenization, numericalization, and padding for text datasets

您将获得的技能

类别:Large Language Modeling
类别:Generative AI
类别:Natural Language Processing
类别:Data Processing
类别:Prompt Engineering
类别:Data Pipelines
类别:Artificial Intelligence
类别:Text Mining
类别:Deep Learning
类别:PyTorch (Machine Learning Library)

您将学到什么

  • Explain how one-hot encoding, bag-of-words, embeddings, and embedding bags transform text into numerical features for NLP models

  • Implement Word2Vec models using CBOW and Skip-gram architectures to generate contextual word embeddings

  • Develop and train neural network-based language models using statistical N-Grams and feedforward architectures

  • Build sequence-to-sequence models with encoder–decoder RNNs for tasks such as machine translation and sequence transformation

您将获得的技能

类别:Natural Language Processing
类别:PyTorch (Machine Learning Library)
类别:Artificial Neural Networks
类别:Data Ethics
类别:Statistical Methods
类别:Feature Engineering
类别:Text Mining
类别:Generative AI
类别:Large Language Modeling
类别:Deep Learning

您将学到什么

  • Explain the role of attention mechanisms in transformer models for capturing contextual relationships in text

  • Describe the differences in language modeling approaches between decoder-based models like GPT and encoder-based models like BERT

  • Implement key components of transformer models, including positional encoding, attention mechanisms, and masking, using PyTorch

  • Apply transformer-based models for real-world NLP tasks, such as text classification and language translation, using PyTorch and Hugging Face tools

您将获得的技能

类别:PyTorch (Machine Learning Library)
类别:Large Language Modeling
类别:Natural Language Processing
类别:Text Mining
类别:Generative AI
类别:Applied Machine Learning

您将学到什么

  • Sought-after, job-ready skills businesses need for working with transformer-based LLMs in generative AI engineering

  • How to perform parameter-efficient fine-tuning (PEFT) using methods like LoRA and QLoRA to optimize model training

  • How to use pretrained transformer models for language tasks and fine-tune them for specific downstream applications

  • How to load models, run inference, and train models using the Hugging Face and PyTorch frameworks

您将获得的技能

类别:PyTorch (Machine Learning Library)
类别:Generative AI
类别:Performance Tuning
类别:Natural Language Processing
类别:Large Language Modeling
类别:Prompt Engineering

您将学到什么

  • In-demand generative AI engineering skills in fine-tuning LLMs that employers are actively seeking

  • Instruction tuning and reward modeling using Hugging Face, plus understanding LLMs as policies and applying RLHF techniques

  • Direct preference optimization (DPO) with partition function and Hugging Face, including how to define optimal solutions to DPO problems

  • Using proximal policy optimization (PPO) with Hugging Face to build scoring functions and tokenize datasets for fine-tuning

您将获得的技能

类别:Large Language Modeling
类别:Generative AI
类别:Reinforcement Learning
类别:Natural Language Processing
类别:Performance Tuning
类别:Prompt Engineering

您将学到什么

  • In-demand, job-ready skills businesses seek for building AI agents using RAG and LangChain in just 8 hours

  • How tapply the fundamentals of in-context learning and advanced prompt engineering timprove prompt design

  • Key LangChain concepts, including tools, components, chat models, chains, and agents

  • How tbuild AI applications by integrating RAG, PyTorch, Hugging Face, LLMs, and LangChain technologies

您将获得的技能

类别:Natural Language Processing
类别:Prompt Engineering
类别:Generative AI
类别:LLM Application
类别:Artificial Intelligence
类别:Large Language Modeling
类别:Generative AI Agents

您将学到什么

  • Gain practical experience building your own real-world generative AI application to showcase in interviews

  • Create and configure a vector database to store document embeddings and develop a retriever to fetch relevant segments based on user queries

  • Set up a simple Gradio interface for user interaction and build a question-answering bot using LangChain and a large language model (LLM)

您将获得的技能

类别:User Interface (UI)
类别:Generative AI
类别:Natural Language Processing
类别:Prompt Engineering
类别:Database Management Systems
类别:Data Storage Technologies
类别:Document Management
类别:LLM Application

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

IBM Skills Network Team
IBM
83 门课程1,540,397 名学生
Sina Nazeri
IBM
2 门课程50,739 名学生
Abhishek Gagneja
IBM
6 门课程238,660 名学生

提供方

IBM

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题

¹ 基于美国 2021 年 Cousera 学生结果调查的结果。