Johns Hopkins University
YARN MapReduce Architecture and Advanced Programming
Johns Hopkins University

YARN MapReduce Architecture and Advanced Programming

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
中级 等级

推荐体验

2 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
中级 等级

推荐体验

2 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度

您将学到什么

  • Learn the fundamentals of YARN and MapReduce architectures, including how they work together to process large-scale data efficiently.

  • Understand and implement Mapper and Reducer parallelism in MapReduce jobs to improve data processing efficiency and scalability.

  • Apply optimization techniques such as combiners, partitioners, and compression to enhance the performance and I/O operations of MapReduce jobs.

  • Explore advanced concepts like multithreading, speculative execution, input/output formats, and how to avoid common MapReduce anti-patterns.

要了解的详细信息

可分享的证书

添加到您的领英档案

作业

12 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

积累特定领域的专业知识

本课程是 Big Data Processing Using Hadoop 专项课程 专项课程的一部分
在注册此课程时,您还会同时注册此专项课程。
  • 向行业专家学习新概念
  • 获得对主题或工具的基础理解
  • 通过实践项目培养工作相关技能
  • 获得可共享的职业证书

该课程共有5个模块

This course provides a comprehensive introduction to YARN and MapReduce architectures, covering their fundamental components and capabilities. You will explore the MapReduce programming model, focusing on optimization techniques such as combiners, partitioners, and compression. Key concepts like Mapper and Reducer parallelism will be demonstrated, alongside practical steps for writing and configuring MapReduce jobs. The course also delves into advanced topics such as multithreading, speculative execution, and input/output formats. By the end, You will gain a deep understanding of MapReduce and be equipped to apply best practices in real-world scenarios.

涵盖的内容

2篇阅读材料

In this module, we will cover the architecture YARN architecture and architectural capabilities followed by MapReduce architecture built on YARN

涵盖的内容

6个视频4篇阅读材料3个作业

This module provides a comprehensive overview of the MapReduce API, guiding you through the steps to write a MapReduce program. It covers the concepts of Mapper and Reducer parallelism, illustrating their implementation and impact on data processing efficiency.

涵盖的内容

6个视频5篇阅读材料3个作业

This module focuses on advanced MapReduce optimization techniques, including the use of combiners to enhance performance, partitioners to manage data distribution across reducers, and compression methods to optimize I/O. It also covers the application of counters to collect and analyze statistics about MapReduce jobs.

涵盖的内容

6个视频5篇阅读材料3个作业

This module explores advanced MapReduce concepts including multithreading, the internals of input/output formats, and speculative execution. It also covers running jobs locally and identifies common MapReduce anti-patterns to avoid.

涵盖的内容

7个视频5篇阅读材料3个作业

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

Karthik Shyamsunder
Johns Hopkins University
4 门课程991 名学生

提供方

从 Data Management 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题