Pearson
Quick Start Guide to Large Language Models (LLMs): Unit 3
Pearson

Quick Start Guide to Large Language Models (LLMs): Unit 3

Pearson

位教师:Pearson

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
中级 等级

推荐体验

8 小时 完成
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
中级 等级

推荐体验

8 小时 完成
灵活的计划
自行安排学习进度

您将学到什么

  • Develop custom multimodal models and implement reinforcement learning for dynamic LLM refinement.

  • Master advanced fine-tuning techniques, optimizing open-source models for specific tasks.

  • Deploy LLMs to the cloud using quantization, pruning, and knowledge distillation for efficient performance.

  • Evaluate LLM tasks across various categories, preparing models for real-world applications.

要了解的详细信息

可分享的证书

添加到您的领英档案

最近已更新!

July 2025

作业

4 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

积累特定领域的专业知识

本课程是 Quick Start Guide to Large Language Models (LLMs) 专项课程 专项课程的一部分
在注册此课程时,您还会同时注册此专项课程。
  • 向行业专家学习新概念
  • 获得对主题或工具的基础理解
  • 通过实践项目培养工作相关技能
  • 获得可共享的职业证书

该课程共有1个模块

In this module, you will move beyond basic models to create new architectures tailored to specific challenges. You'll focus on multimodality, integrating different types of data to build models that interpret both text and visuals. Through a hands-on case study, you'll learn to develop a system that answers questions based on images using transformer-based encoders and decoders with cross-attention mechanisms. You'll explore reinforcement learning for large language models (LLMs), focusing on alignment. Your models will learn and refine responses based on live and modeled feedback, setting up training loops that adjust outputs in real time, demonstrated with the open-source Flan-T5 model. You'll dive into the details of open-sourced LLM fine-tuning, using techniques like mixed precision training and gradient accumulation to optimize your training loops for efficiency and precision. Real-world case studies, from multi-label classification to instruction alignment, will provide insights into training LLMs. As you wrap up this module, you'll tackle deployment and evaluation. You'll address the challenges of moving LLMs to the cloud, focusing on optimization through techniques like quantization, pruning, and knowledge distillation. You'll learn to deploy cost-effective models without sacrificing performance. You'll also evaluate LLM tasks, breaking them down into four main categories and providing guidelines for each. Additionally, you'll explore how LLMs structure knowledge within their parameters and extract insights through simple probing mechanisms. By the end of this lesson, you'll have the tools to evaluate LLMs and their ability to solve specific tasks on certain datasets.

涵盖的内容

24个视频4个作业

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

Pearson
Pearson
268 门课程9,891 名学生

提供方

Pearson

从 Machine Learning 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题