Packt
Train Large Language Models Faster - Parallelism Deep Dive

只需 199 美元(原价 399 美元)即可通过 Coursera Plus 学习更高水平的技能。立即节省

Packt

Train Large Language Models Faster - Parallelism Deep Dive

深入了解一个主题并学习基础知识。
中级 等级

推荐体验

1 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
中级 等级

推荐体验

1 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度

您将学到什么

  • Learn to apply parallelism strategies to accelerate LLM training.

  • Understand the differences and use cases of data, model, and hybrid parallelism.

  • Gain hands-on experience with PyTorch and DeepSpeed for LLM training optimization.

  • Master fault tolerance and checkpointing strategies to ensure training reliability.

您将获得的技能

要了解的详细信息

可分享的证书

添加到您的领英档案

最近已更新!

January 2026

作业

16 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

该课程共有16个模块

In this module, we will introduce the course, explain the key objectives, and provide a roadmap of how parallelism techniques will accelerate large language model training. You will gain an overview of what to expect and get familiar with the course structure.

涵盖的内容

3个视频1篇阅读材料

In this module, we will explore the different parallelism strategies for LLM training, including single GPU vs. parallel strategies. You'll understand how parallelism improves efficiency and learn its key advantages in real-world applications.

涵盖的内容

4个视频1个作业

In this module, we will establish a foundational understanding of IT concepts crucial for training LLMs. Topics like cloud computing, storage solutions, and computer architecture will provide the context for optimizing LLM workflows.

涵盖的内容

10个视频1个作业

In this module, we will explore GPU architecture and its role in LLM training. You'll learn how GPUs are designed to handle the massive computations required by large models, ensuring faster and more efficient training.

涵盖的内容

2个视频1个作业

In this module, we will cover the fundamentals of machine learning and deep learning. We’ll explore neural networks, training processes, and key differences between ML and DL to lay the groundwork for LLM training.

涵盖的内容

11个视频1个作业

In this module, we will dive into the fundamentals of LLMs, starting with the Transformer architecture. You'll learn about key components such as self-attention and how the Transformer library powers modern AI applications.

涵盖的内容

5个视频1个作业

In this module, we will introduce parallel computing concepts and their relevance to LLM training. You’ll gain a deeper understanding of how parallelism reduces bottlenecks and accelerates model development.

涵盖的内容

2个视频1个作业

In this module, we will explore data, model, and hybrid parallelism in detail. You’ll learn how each strategy optimizes training workflows and where to apply them for maximum efficiency in LLM training.

涵盖的内容

11个视频1个作业

In this module, we will delve into pipeline and tensor parallelism, explaining their key concepts and how they work together to enhance training efficiency. You’ll also explore real-world strategies for implementing these techniques.

涵盖的内容

11个视频1个作业

In this module, we will dive deep into tensor parallelism, focusing on partitioning strategies, communication patterns, and device synchronization. You'll gain a clear understanding of how this technique accelerates LLM training.

涵盖的内容

8个视频1个作业

In this module, we will shift to hands-on learning, applying data parallelism techniques in PyTorch. You'll train a small model on the MNIST dataset, testing different parallelism strategies and observing their effects on performance.

涵盖的内容

11个视频1个作业

In this module, we will apply data parallelism to the WikiText-2 dataset and use DeepSpeed to optimize memory usage. You'll gain hands-on experience with advanced techniques to improve LLM training efficiency.

涵盖的内容

3个视频1个作业

In this module, we will guide you through setting up Runpod.io for multi-GPU parallelism. You’ll gain practical experience running parallelism experiments on a distributed environment and working with large-scale models.

涵盖的内容

5个视频1个作业

In this module, we will dive into fault tolerance and checkpointing strategies. You'll learn how to ensure scalable, resilient LLM training workflows that can recover from failures and continue without interruptions.

涵盖的内容

10个视频1个作业

In this module, we will explore cutting-edge advancements in parallel computing and LLM training. You'll gain insight into the latest trends and technologies that are revolutionizing AI and the future of machine learning.

涵盖的内容

1个视频1个作业

In this module, we will wrap up the course by summarizing everything you've learned about parallelism and LLM training. You'll also receive guidance on how to proceed with your AI journey and apply these skills in future projects.

涵盖的内容

1个视频2个作业

位教师

Packt - Course Instructors
Packt
1,299 门课程334,545 名学生

提供方

Packt

从 Cloud Computing 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题