Packt

Getting Started with Vector Databases and AI Embeddings

Packt

Getting Started with Vector Databases and AI Embeddings

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
初级 等级

推荐体验

4 小时 完成
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
初级 等级

推荐体验

4 小时 完成
灵活的计划
自行安排学习进度

您将学到什么

  • Understand how vector embeddings transform raw data into structured formats for AI models

  • Explore how similarity metrics and vector search enhance data retrieval capabilities

  • Learn how vector databases store, index, and manage high-dimensional embeddings

  • Apply real-world use cases like RAG, semantic search, and anomaly detection with vector DBs

要了解的详细信息

可分享的证书

添加到您的领英档案

最近已更新!

February 2026

作业

6 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

该课程共有5个模块

In this module, we will introduce the course, outlining what you’ll learn and how the content is structured. You’ll get a clear overview of the topics ahead and how they connect to real-world AI applications. This sets the stage for a smooth and goal-oriented learning experience.

涵盖的内容

1个视频1篇阅读材料

In this module, we will explore the foundational role of vectors in artificial intelligence, diving deep into how raw data becomes meaningful through embeddings. We’ll cover essential topics including vector representations, embedding models, similarity metrics, and search mechanisms. By the end, you’ll understand how vectors form the backbone of modern AI applications like semantic search and recommendation systems.

涵盖的内容

8个视频1个作业

In this module, we will unpack the architecture and utility of vector databases in modern AI ecosystems. From handling structured vs. unstructured data to executing scalable vector searches, this section offers a hands-on understanding of how vector databases support real-time, intelligent data operations. You’ll also gain insight into choosing the right vector database for your use case.

涵盖的内容

6个视频1个作业

In this module, we will dive into high-impact, real-world use cases where vector databases and embeddings drive innovation. From semantic search and recommendation systems to RAG, anomaly detection, and visual search, you’ll see how these concepts are applied across sectors. Each use case provides practical insights into the capabilities and potential of vector-driven AI.

涵盖的内容

6个视频1个作业

In this module, we will wrap up the course by reviewing the main takeaways from each section. You’ll consolidate your understanding of vectors, embeddings, vector databases, and their practical applications. We’ll also share suggestions for further learning and how to put your new knowledge into action.

涵盖的内容

2个视频3个作业

位教师

Packt - Course Instructors
Packt
1,528 门课程 402,494 名学生

提供方

Packt

从 Machine Learning 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.

自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'

Jennifer J.

自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'

Larry W.

自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'

Chaitanya A.

''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题