Packt
Deep Learning: Convolutional Neural Networks with TensorFlow
Packt

Deep Learning: Convolutional Neural Networks with TensorFlow

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
中级 等级

推荐体验

5 小时 完成
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
中级 等级

推荐体验

5 小时 完成
灵活的计划
自行安排学习进度

您将学到什么

  • Understand the foundational concepts of Convolutional Neural Networks (CNNs) and their architecture

  • Apply CNN models to real-world image and text classification tasks using TensorFlow

  • Analyze the performance of CNNs and optimize them with techniques like data augmentation and batch normalization

  • Evaluate the effectiveness of transfer learning using pre-trained models on new datasets

要了解的详细信息

可分享的证书

添加到您的领英档案

作业

2 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

积累特定领域的专业知识

本课程是 Deep Learning with TensorFlow 专项课程 专项课程的一部分
在注册此课程时,您还会同时注册此专项课程。
  • 向行业专家学习新概念
  • 获得对主题或工具的基础理解
  • 通过实践项目培养工作相关技能
  • 获得可共享的职业证书

该课程共有4个模块

In this module, we will introduce you to the author and the key objectives of the course. You will gain insights into the learning approach and understand the resources and prerequisites necessary to begin your learning journey. Additionally, this section outlines the topics and content that will be covered throughout the course.

涵盖的内容

2个视频1篇阅读材料

In this module, we will explore the fundamentals of Convolutional Neural Networks (CNNs), beginning with the core concept of convolution and its mathematical interpretation. You will learn how CNNs are structured and implemented, with hands-on applications using popular datasets like Fashion MNIST and CIFAR-10. Additionally, we'll cover advanced techniques such as data augmentation and batch normalization to enhance model accuracy.

涵盖的内容

12个视频1个插件

In this module, we will explore the fundamentals of Natural Language Processing (NLP), starting with how text can be represented as sequence data using embeddings. You will learn how to preprocess text data using practical coding examples, and then dive into applying Convolutional Neural Networks (CNNs) to text for sequence analysis. The module concludes with hands-on work on text classification using CNN models.

涵盖的内容

5个视频1个插件

In this module, we will introduce you to transfer learning and its application in computer vision. You will explore popular pre-trained models, learn to manage large datasets, and implement two different approaches to transfer learning. Through practical coding exercises, you'll apply these techniques with and without data augmentation to enhance your understanding of how transfer learning optimizes deep learning models for new tasks.

涵盖的内容

6个视频1篇阅读材料2个作业

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

Packt - Course Instructors
Packt
971 门课程231,340 名学生

提供方

Packt

从 Machine Learning 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题