Packt
Computer Vision: Face Recognition Quick Starter in Python
Packt

Computer Vision: Face Recognition Quick Starter in Python

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
初级 等级

推荐体验

1 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
初级 等级

推荐体验

1 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度

您将学到什么

  • Explain the principles of face detection and face recognition technology.

  • Install and configure dependencies and libraries such as dlib, OpenCV, and Pillow.

  • Execute face detection and face recognition tasks using Python.

要了解的详细信息

可分享的证书

添加到您的领英档案

作业

10 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

该课程共有26个模块

In this module, we will introduce the course, providing an overview of the topics to be covered, and discuss the significance of face recognition in various applications. We'll also present the structure and objectives of the course to set clear expectations.

涵盖的内容

2个视频1篇阅读材料

In this module, we will set up the development environment by installing the Anaconda package. This will prepare our computer for Python coding, ensuring that we have the necessary tools and libraries for face recognition tasks.

涵盖的内容

1个视频1个插件

In this module, we will cover essential Python programming basics, including assignments, flow control, data structures, and functions. This foundational knowledge is crucial for understanding and implementing face recognition algorithms.

涵盖的内容

4个视频1个插件

In this module, we will install the necessary dependencies and libraries required for face recognition. We will also address common issues with DLib and ensure the environment is correctly configured for our projects.

涵盖的内容

3个视频1个插件

In this module, we will introduce face detectors, discussing their importance and the different techniques used for detecting faces. This knowledge is fundamental for implementing effective face recognition solutions.

涵盖的内容

1个视频1个作业1个插件

In this module, we will implement face detection in code using the face_recognition and OpenCV libraries. We will cover practical coding examples and ensure a thorough understanding of face detection implementation.

涵盖的内容

2个视频1个插件

In this module, we will address the common issue of the cv2.imshow() function not responding while displaying images. We will implement a fix and verify that the display window functions correctly.

涵盖的内容

1个视频1个插件

In this module, we will detect and locate faces from a real-time webcam video feed. We will cover the steps required to implement and optimize real-time face detection for practical applications.

涵盖的内容

2个视频1个作业1个插件

In this module, we will detect and locate faces in pre-recorded video files. We will discuss the implementation details and performance considerations for video-based face detection.

涵盖的内容

1个视频1个插件

In this module, we will blur detected faces in real-time video to ensure privacy. We will cover the implementation and testing of face blurring techniques in a real-time context.

涵盖的内容

1个视频1个插件

In this module, we will install the libraries required for real-time facial expression detection. Proper installation and configuration are essential for the subsequent implementation of facial expression detection.

涵盖的内容

1个视频1个作业1个插件

In this module, we will detect facial expressions from a real-time webcam video feed. We will implement the necessary algorithms and optimize the detection process for accurate and efficient performance.

涵盖的内容

2个视频1个插件

In this module, we will delve into the techniques for detecting facial expressions in video footage. We will explore methods to identify and analyze emotions based on facial cues, and implement algorithms that enhance the accuracy of facial expression recognition.

涵盖的内容

1个视频1个插件

In this module, we will detect facial expressions in static images. We will discuss the implementation and validation of image-based facial expression detection techniques.

涵盖的内容

1个视频1个作业1个插件

In this module, we will introduce age and gender detection, discussing their significance and applications. We will provide an overview of the steps involved in implementing real-time age and gender classification.

涵盖的内容

1个视频1个插件

In this module, we will perform real-time age and gender classification on webcam video feed. We will focus on the implementation, optimization, and validation of the detection algorithms.

涵盖的内容

1个视频1个插件

In this module, we will classify the age and gender of faces in static images. We will cover the implementation and validation of image-based detection algorithms.

涵盖的内容

1个视频1个作业1个插件

In this module, we will introduce face recognition, discussing its applications and underlying principles. We will also address the challenges and solutions involved in face recognition technology.

涵盖的内容

1个视频1个插件

In this module, we will implement face recognition algorithms to detect and recognize faces in images. We will cover the coding and optimization techniques required for an effective face recognition system.

涵盖的内容

2个视频1个插件

In this module, we will detect and recognize faces from a real-time webcam video feed. We will focus on implementing and optimizing real-time face recognition algorithms.

涵盖的内容

2个视频1个作业1个插件

In this module, we will detect and recognize faces in pre-recorded video files. We will discuss the implementation details and performance evaluation of video-based face recognition.

涵盖的内容

1个视频1个插件

In this module, we will calculate the distance between faces for advanced analysis. We will cover the implementation and optimization of face distance algorithms.

涵盖的内容

2个视频1个插件

In this module, we will learn how to visualize and customize face landmarks in images. We will cover the implementation and testing of face landmark visualization techniques.

涵盖的内容

2个视频1个作业1个插件

In this module, we will visualize and customize face landmarks for multiple faces in both real-time and pre-saved videos. We will focus on the implementation, optimization, and testing of multi-face landmark visualization techniques.

涵盖的内容

2个视频1个插件

In this module, we will demonstrate how to customize face landmarks to apply simple makeup. We will cover the implementation and testing of face makeup techniques using face landmarks.

涵盖的内容

1个视频1个插件

In this module, we will demonstrate face makeup in a real-time video using face landmarks. We will focus on implementing, optimizing, and validating real-time face makeup algorithms.

涵盖的内容

1个视频3个作业

位教师

Packt - Course Instructors
Packt
971 门课程229,122 名学生

提供方

Packt

从 Data Analysis 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题