Packt
A Practical Approach to Timeseries Forecasting Using Python

Unlock access to 10,000+ courses with Coursera Plus

Packt

A Practical Approach to Timeseries Forecasting Using Python

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
中级 等级

推荐体验

2 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
中级 等级

推荐体验

2 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度

您将学到什么

  • Visualize and manipulate time series data using Python and key libraries

  • Build and tune ARIMA and SARIMA models for effective forecasting

  • Implement LSTM, BiLSTM, and GRU models for deep learning-based predictions

  • Design end-to-end forecasting pipelines for real-world datasets

要了解的详细信息

可分享的证书

添加到您的领英档案

最近已更新!

July 2025

作业

9 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

该课程共有9个模块

In this module, we will introduce you to the fundamental concepts of time series forecasting, the course structure, and how each section will build towards a comprehensive understanding of this field. You will also be introduced to your instructor and get an overview of what to expect by the end of this course.

涵盖的内容

3个视频1篇阅读材料

In this module, we will dive deep into the different aspects of time series data, covering its features, types, and the stages involved in forecasting. You will also learn about the integration of machine learning and neural networks, such as RNNs, in time series prediction.

涵盖的内容

9个视频1个作业

In this module, we will focus on the essential skills needed to manipulate and visualize time series data using Python. You will learn how to slice, index, and visualize both single and multiple features to better understand time series datasets.

涵盖的内容

17个视频1个作业

In this module, we will cover key data processing tasks required to prepare your dataset for forecasting. You will work through stationarity checks, noise reduction, and resampling, all essential steps for building a reliable forecasting model.

涵盖的内容

16个视频1个作业

In this module, we will introduce machine learning approaches for time series forecasting, including ARIMA and SARIMA models. You will learn to implement these techniques using Python and assess their effectiveness through evaluation metrics.

涵盖的内容

16个视频1个作业

In this module, we will focus on Recurrent Neural Networks (RNNs), specifically LSTM and BiLSTM models, for time series forecasting. You will explore how these deep learning models are applied and optimized for accurate predictions.

涵盖的内容

17个视频1个作业

In this module, we will guide you through a hands-on project predicting COVID-19 positive cases using machine learning algorithms. You will process and analyze the dataset, followed by the implementation of ARIMA and SARIMA models for future predictions.

涵盖的内容

12个视频1个作业

In this project, we will focus on predicting Microsoft Corporation's stock prices using RNN models. You will learn how to preprocess the dataset, visualize data patterns, and use LSTM and BiLSTM models for stock price forecasting.

涵盖的内容

12个视频1个作业

In this project, you will use deep learning techniques to forecast birth rates over time. You will analyze and manipulate the dataset, then apply advanced RNN models like LSTM and BiLSTM to predict future birth rate trends.

涵盖的内容

13个视频2个作业

位教师

Packt - Course Instructors
Packt
1,186 门课程291,155 名学生

提供方

Packt

从 Machine Learning 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题