University of Michigan
Network Modeling and Analysis in Python
University of Michigan

Network Modeling and Analysis in Python

Daniel Romero

位教师:Daniel Romero

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
高级设置 等级

推荐体验

3 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
高级设置 等级

推荐体验

3 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度

您将学到什么

  • Understand the fundamental principles underlying network structures and apply NetworkX to analyze these principles in real-world networks.

  • Describe the practical uses of the community detection problem and use algorithms to detect and evaluate community structure in real networks.

  • Explain the value and applications of network generation models, learn their limits and strengths, and employ them to create synthetic networks.

  • Identify several basic diffusion models and implement them to run simulations using real and synthetic networks.

要了解的详细信息

可分享的证书

添加到您的领英档案

最近已更新!

June 2025

作业

14 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

积累特定领域的专业知识

本课程是 More Applied Data Science with Python 专项课程 专项课程的一部分
在注册此课程时,您还会同时注册此专项课程。
  • 向行业专家学习新概念
  • 获得对主题或工具的基础理解
  • 通过实践项目培养工作相关技能
  • 获得可共享的职业证书

该课程共有4个模块

In this module, you will continue learning about the foundational concepts and structural properties that characterize connectivity in networks when considering node attributes. You will explore the principle of homophily or assortative mixing, which explains the tendency of nodes to connect with others that are similar to themselves, and reciprocity, which addresses the mutual linkage between nodes. The module will also cover the concept of structural holes, which highlights the advantages of nodes positioned between unconnected network clusters, and the k-core decomposition method, used to identify cohesive subgroups within the network.

涵盖的内容

5个视频10篇阅读材料3个作业1个编程作业1个讨论话题1个非评分实验室

This module covers Community Structure in networks: the organization of nodes in a network into clusters or communities, where nodes within the same community have a higher density of connections within their community than across other communities. We explore algorithms to identify communities in networks and evaluate them. Key topics include Modularity, a measure that quantifies the strength of the division of a network into modules or communities; the Girvan-Newman algorithm, a method that systematically removes edges from the network to find the best division based on edge betweenness centrality; Agglomerative Hierarchical Clustering, a technique that builds a hierarchy of clusters by progressively merging groups based on their distance or similarity; and Label Propagation, an algorithm for detecting communities based on spreading labels throughout the network and forming communities based on the dominant label. We also discuss applications to the community detection problem in real-world scenarios.

涵盖的内容

8个视频1篇阅读材料4个作业1个编程作业1个非评分实验室

This module expands on network generative models, building on previously covered models such as Small-World and Preferential Attachment models. We'll explore the Erdős-Rényi model, which connects nodes randomly and serves as a baseline for understanding random graph theory. The module also covers the Stochastic Block Model, which is useful for modeling community structures by grouping nodes and connecting them based on group membership. Additionally, we explore the Configuration Model, which is used for creating random networks that maintain a given degree distribution.

涵盖的内容

5个视频1篇阅读材料3个作业1个编程作业1个非评分实验室

This module explores how ideas, diseases, and information spread in networks using models like SI, SIS, SIR, Independent Cascade, and Linear Threshold. Learners will simulate these models with Python, modify them, and tackle the influence maximization problem, identifying key nodes to optimize information or behavior spread.

涵盖的内容

13个视频3篇阅读材料4个作业1个编程作业1个非评分实验室

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

Daniel Romero
University of Michigan
4 门课程114,878 名学生

提供方

从 Data Analysis 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题