SkillUp

Machine Learning for Healthcare Applications

SkillUp

Machine Learning for Healthcare Applications

Ramesh Sannareddy
SkillUp

位教师:Ramesh Sannareddy

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
中级 等级

推荐体验

8 小时 完成
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
中级 等级

推荐体验

8 小时 完成
灵活的计划
自行安排学习进度

您将学到什么

  • Classify healthcare problems as supervised, unsupervised, or temporal ML tasks aligned with clinical workflows.

  • Build and train clinical ML models using meaningful features for prediction, clustering, and time-based risk scoring.

  • Evaluate models using discrimination, calibration, and clinical utility metrics with patient- and time-aware validation.

  • Interpret outputs, detect bias or leakage, and deliver actionable results to technical and clinical stakeholders.

要了解的详细信息

可分享的证书

添加到您的领英档案

最近已更新!

February 2026

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

积累特定领域的专业知识

本课程是 Data Science for Healthcare 专项课程 专项课程的一部分
在注册此课程时,您还会同时注册此专项课程。
  • 向行业专家学习新概念
  • 获得对主题或工具的基础理解
  • 通过实践项目培养工作相关技能
  • 获得可共享的职业证书

该课程共有4个模块

Supervised learning forms the core of many widely used clinical decision-support tools, enabling predictions such as mortality risk, diagnostic assistance, readmission likelihood, and adverse event detection. In this module, you will understand how to convert clinical problems into prediction tasks, define features and labels appropriately, and evaluate whether supervised learning is the right framework for a given healthcare question. The module introduces essential algorithms, including logistic regression, tree-based models, and regularized regression, with a focus on interpretability and clinical reasoning. You will also explore common data pitfalls such as class imbalance and label leakage, both of which can disrupt clinical validity if mishandled. Through practical exercises, you will build foundational models used throughout healthcare analytics.

涵盖的内容

7个视频3篇阅读材料4个作业1个讨论话题3个插件

Unsupervised learning enables clinicians and researchers to uncover hidden structure in patient populations, identify disease subtypes, and discover new risk categories when labeled outcomes are not available. This module focuses on clustering and dimensionality reduction for patient phenotyping, using both structured clinical data and aggregated EHR features. You will explore when and why unsupervised learning is used, compare major clustering algorithms, and practice interpreting clusters. You will also learn dimensionality reduction techniques used to visualize high-dimensional patient data and guide phenotype refinement. Finally, the module covers cluster validation, reproducibility, and clinical interpretability, all of which are essential to safely using unsupervised insights in healthcare.

涵盖的内容

4个视频3篇阅读材料4个作业1个讨论话题3个插件

Healthcare data is inherently temporal, encompassing vitals, lab results, medications, and clinical events collected over time. This module introduces classical and feature-based methods to represent and analyze these longitudinal patterns for early warning, deterioration detection, and forecasting tasks. You will study the challenges of irregular clinical time series, construct time-window-based and aggregation-based features, and apply non-neural sequence modeling techniques suitable for clinical environments. The second half of the module covers rigorous evaluation methods for healthcare models. You will explore discrimination, calibration, thresholding, and clinical utility metrics, and will design validation strategies that respect temporal ordering, avoid information leakage, and reflect real clinical deployment constraints.

涵盖的内容

4个视频3篇阅读材料4个作业1个讨论话题4个插件

In this final module, you will consolidate your learning of supervised learning, unsupervised learning, temporal modeling, and evaluation by completing a hands-on final project. You will complete an end-to-end project involving clinical problem formulation, model development, exploratory analysis, temporal feature construction, and model evaluation. You will justify model choices, articulate assumptions, and interpret findings from a clinical perspective. Emphasis is placed on communication and documentation, ensuring that results can be reviewed by both technical and clinical decision-makers. The module concludes with a course summary, a glossary of key terms, and a final exam designed to assess their conceptual understanding across all modules.

涵盖的内容

1个视频3篇阅读材料1个作业1次同伴评审1个讨论话题1个插件

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

Ramesh Sannareddy
24 门课程 491,069 名学生

提供方

SkillUp

从 Machine Learning 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.

自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'

Jennifer J.

自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'

Larry W.

自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'

Chaitanya A.

''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题

¹ 本课程的部分作业采用 AI 评分。对于这些作业,将根据 Coursera 隐私声明使用您的数据。