Whizlabs
Getting Started with Amazon Bedrock
Whizlabs

Getting Started with Amazon Bedrock

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
中级 等级

推荐体验

6 小时 完成
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
中级 等级

推荐体验

6 小时 完成
灵活的计划
自行安排学习进度

您将学到什么

  • Learn how to build and deploy generative AI applications using Amazon Bedrock’s foundation models.

  • Explore no-code prototyping tools like PartyRock to rapidly test AI ideas.

  • Understand how to enhance model performance using Retrieval-Augmented Generation (RAG).

  • Implement Guardrails to ensure responsible AI usage and content safety.

要了解的详细信息

可分享的证书

添加到您的领英档案

最近已更新!

August 2025

作业

6 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

该课程共有3个模块

This week, we’ll explore the foundational elements of Amazon Bedrock, AWS’s fully managed service for building and scaling generative AI applications with foundation models. You’ll gain a clear understanding of how Bedrock fits into the broader AWS ecosystem and supports serverless, customizable AI solutions. We’ll cover essential topics including the core architecture and pricing model of Bedrock, how to navigate the Bedrock interface, and the use of PartyRock—a no-code playground for quickly prototyping generative AI apps. You’ll also explore responsible AI principles, learn how to evaluate and choose the right foundation models, and see Amazon Bedrock in action through guided demos. By the end of the week, you’ll have a solid understanding of Amazon Bedrock’s capabilities and how to get started with building and experimenting with foundation models in a secure and scalable way.

涵盖的内容

8个视频3篇阅读材料2个作业

In Week 2, we’ll shift our focus to Retrieval-Augmented Generation (RAG), safety mechanisms, and agent-based orchestration in Amazon Bedrock. You’ll begin by understanding the architecture and principles behind RAG and how it enhances large language model (LLM) outputs with external knowledge sources. This week also introduces you to Amazon Bedrock Guardrails—a powerful toolset for implementing content safety, privacy filters, and responsible AI controls. You’ll explore how to create and apply Guardrails through practical demos. Finally, you’ll get hands-on with Bedrock Agents, learning how to configure them to automate workflows, enhance interactivity, and support dynamic, multi-step tasks. By the end of this module, you’ll be equipped to build secure, reliable, and intelligent generative AI applications using Amazon Bedrock’s advanced capabilities.

涵盖的内容

5个视频1篇阅读材料2个作业

Welcome to Week 3! This final module focuses on advanced topics including workflow automation, system integration, and career development within the Amazon Bedrock ecosystem. You’ll learn how to streamline generative AI processes using Amazon Bedrock Flows and implement data-driven automation through Bedrock Data Automation (BDA). We’ll also explore how to monitor and integrate Bedrock applications with AWS services like Amazon CloudWatch and Amazon S3 to ensure operational visibility and performance. Finally, you’ll gain insight into the certifications, career paths, and job opportunities available for professionals working with generative AI and AWS technologies. By the end of the week, you’ll be equipped with the skills to automate, monitor, and scale generative AI solutions—while confidently navigating your career journey in the AWS ecosystem.

涵盖的内容

4个视频1篇阅读材料2个作业1个插件

位教师

Whizlabs Instructor
Whizlabs
132 门课程86,002 名学生

提供方

Whizlabs

从 Cloud Computing 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题