Rutgers the State University of New Jersey
Generative AI & Governmental Financial Reporting
Rutgers the State University of New Jersey

Generative AI & Governmental Financial Reporting

Huaxia Li

位教师:Huaxia Li

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
中级 等级

推荐体验

6 小时 完成
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
中级 等级

推荐体验

6 小时 完成
灵活的计划
自行安排学习进度

您将学到什么

  • Understand the role of AI and LLMs in modern accounting practices.

  • Utilize LLMs to extract structured financial data from unstructured governmental reports.

  • Evaluate the accuracy and efficiency of AI-enabled data extraction frameworks.

要了解的详细信息

可分享的证书

添加到您的领英档案

最近已更新!

May 2025

作业

9 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

该课程共有4个模块

By the end of Module 1, learners will gain a foundational understanding of AI and machine learning and their relevance to accounting. They will be able to describe Large Language Models (LLMs) and their applications in the field while recognizing both the benefits and challenges of integrating LLMs into accounting practices. Additionally, they will understand the importance of prompt engineering in shaping LLM outputs and appreciate how technological advancements have made LLMs more accessible to non-technical users.

涵盖的内容

4个视频2篇阅读材料2个作业1个讨论话题

By the end of Module 2, learners will understand various methods for implementing LLMs in accounting, including UI, API, UI-RPA, and API-RPA, and be able to evaluate their advantages and limitations. They will develop the ability to choose the most suitable implementation approach for different accounting tasks while considering key integration factors. Additionally, they will gain insights into practical considerations and make informed decisions about LLM adoption based on organizational needs and available resources.

涵盖的内容

5个视频1篇阅读材料2个作业1个讨论话题

By the end of Module 3, learners will understand the challenges of extracting financial data from unstructured sources and explore the components and workflow of an LLM-enabled data extraction framework. They will learn how to apply prompt engineering techniques to enhance extraction accuracy and recognize how the framework can be adapted for various financial documents. Additionally, they will appreciate the efficiency and accuracy benefits that LLMs bring to financial data extraction.

涵盖的内容

6个视频1篇阅读材料2个作业1个讨论话题

By the end of Module 4, learners will be able to evaluate the accuracy and efficiency of an LLM-enabled data extraction framework and interpret its results across different financial documents. They will identify common extraction errors and apply strategies to address them while refining prompts to enhance performance. Additionally, they will explore considerations for scaling the framework to handle larger datasets and different LLMs effectively.

涵盖的内容

3个视频1篇阅读材料3个作业1个讨论话题

位教师

Huaxia Li
Rutgers the State University of New Jersey
1 门课程245 名学生

从 Business Essentials 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题