SkillUp

Fundamentals of Data Science in Healthcare

SkillUp

Fundamentals of Data Science in Healthcare

Ramesh Sannareddy
SkillUp

位教师:Ramesh Sannareddy

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
中级 等级

推荐体验

8 小时 完成
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
中级 等级

推荐体验

8 小时 完成
灵活的计划
自行安排学习进度

您将学到什么

  • Describe the characteristics, challenges, and analytical roles of major healthcare data sources, including EHRs, claims, and registries.

  • Explain essential healthcare data standards and their importance in interoperability and structured analytics.

  • Apply data preprocessing and quality assessment techniques, including handling missing data, temporal alignment, and feature engineering.

  • Implement privacy-preserving preparation steps that ensure HIPAA-aligned handling of healthcare datasets.

要了解的详细信息

可分享的证书

添加到您的领英档案

最近已更新!

February 2026

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

积累特定领域的专业知识

本课程是 Data Science for Healthcare 专项课程 专项课程的一部分
在注册此课程时,您还会同时注册此专项课程。
  • 向行业专家学习新概念
  • 获得对主题或工具的基础理解
  • 通过实践项目培养工作相关技能
  • 获得可共享的职业证书

该课程共有4个模块

Healthcare analytics starts with understanding where medical data originates, how it is captured, and the inherent challenges that arise throughout clinical workflows. This module will introduce you to the major healthcare data sources, such as electronic health records, claims data, imaging records, registries, and population datasets. Each of these data sources possess unique structures, levels of granularity, and analytical applications. You explore the ecosystem of healthcare information systems and how clinical, operational, and administrative data flow across hospitals, payers, and public health agencies. The module also highlights the common data quality problems in healthcare such as missingness, fragmentation, heterogeneity, and temporal inconsistencies. By the end of this module, you will be able to identify and differentiate healthcare data sources and understand the broader ecosystem within which medical data is generated and exchanged.

涵盖的内容

6个视频3篇阅读材料4个作业1个讨论话题6个插件

Interoperability is essential to producing clean, consistent, and analyzable healthcare datasets. This module introduces the major data standards that govern clinical documentation, diagnostics, billing, and cross-system communication. Learners explore coding systems such as ICD-10, SNOMED CT, CPT, and LOINC, along with interoperability frameworks such as HL7 v2, HL7 v3, and FHIR. The module explains why standardization is necessary, how vocabulary and messaging standards differ, and how interoperability issues can limit analytics. Through examples and hands-on labs, learners practice mapping clinical concepts into standardized formats and examine FHIR resource structures. By the end of this module, learners will understand how standards enable data integration, reduce ambiguity, and support scalable analytics across healthcare organizations.

涵盖的内容

4个视频2篇阅读材料4个作业1个讨论话题6个插件

Before any predictive modeling or analytics can occur, healthcare data must be cleaned, transformed, aligned, and validated. This module covers foundational preprocessing techniques with a focus on challenges unique to healthcare—missingness patterns, irregular time series, inconsistent measurements, and feature engineering from episodic records. Learners will work hands-on with real healthcare datasets to perform data cleaning tasks, create derived features, and assess temporal alignment for longitudinal records. The module also explores HIPAA-aligned de-identification and privacy-preserving preparation steps required before applying analytics. By the end of this module, learners will possess the practical skills necessary to convert raw clinical data into a structured, high-quality analytical dataset suitable for modeling tasks in later courses.

涵盖的内容

5个视频2篇阅读材料4个作业1个讨论话题4个插件

In this final module, you’ll consolidate your learning by completing a hands-on final project. In this project, you will apply the knowledge gained throughout the course to build a healthcare analytics dataset from raw, multi-source data. You will do this by cleaning, integrating, standardizing, and preparing healthcare data for downstream modeling and analysis. Working with a multi-source healthcare dataset, you will apply preprocessing techniques, assign coding standards, resolve data quality issues, and ensure HIPAA-aligned handling and de-identification. The module concludes with a course summary, a glossary of key terms, and a final exam designed to assess your conceptual understanding across all modules.

涵盖的内容

1个视频2篇阅读材料1个作业1次同伴评审1个讨论话题2个插件

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

Ramesh Sannareddy
24 门课程 491,320 名学生

提供方

SkillUp

从 Data Analysis 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.

自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'

Jennifer J.

自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'

Larry W.

自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'

Chaitanya A.

''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题

¹ 本课程的部分作业采用 AI 评分。对于这些作业,将根据 Coursera 隐私声明使用您的数据。