Northeastern University
Foundations for Data Analytics Part 1
Northeastern University

Foundations for Data Analytics Part 1

Qurat-ul-Ain Azim

位教师:Qurat-ul-Ain Azim

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
初级 等级
无需具备相关经验
2 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
初级 等级
无需具备相关经验
2 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

该课程共有7个模块

In this module, we will focus on Python programming fundamentals. The aim is to help you understand Python's basic syntax, data types, and operators, enabling the creation of simple programs. Additionally, we will cover the use of if statements, loops, and proper indentation to control program flow, fostering a foundational understanding of essential control structures in Python programming.

涵盖的内容

5个视频6篇阅读材料2个作业1个讨论话题

In this module we will dive into the diverse landscape of Python data structures, including lists, dictionaries, sets, tuples, and arrays. By exploring real-world use cases, you will uncover the unique strengths and weaknesses of each data structure. You will gain insights into recognizing and understanding the characteristics of these structures, empowering you to make informed choices when tackling programming challenges. Through hands-on practice, you will develop the skills to select and apply the most suitable data structure to efficiently solve a wide range of problems, enhancing their proficiency in Python programming.

涵盖的内容

2个视频2篇阅读材料1个作业

In this module we will introduce DataFrames, a pivotal tool in data manipulation and analysis. You will grasp the fundamental concepts of DataFrames, learning how to create, manipulate, and access data efficiently. You will gain essential skills for basic data exploration–including summarizing data, indexing, and slicing, enabling them to extract meaningful insights. Furthermore, this module equips learners with the expertise to clean and preprocess data, covering handling missing values, filtering data, merging/joining datasets, and transforming data for analysis readiness. By the end of this module, you will harness DataFrames for advanced data analysis, mastering group-wise operations, aggregation, and statistical analysis.

涵盖的内容

3个视频3篇阅读材料2个作业

This module will equip you with a comprehensive toolkit for proficient data exploration and analysis. It covers the essential techniques and tools for effectively summarizing data sets, encompassing statistical summaries, data visualization, and data cleaning methods. You will learn how to identify and assess missing data, outliers, and anomalies, vital tasks during the initial exploratory phase of data analysis. Furthermore, you will develop the ability to uncover patterns, relationships, and trends within the data using various visualizations, including scatter plots, histograms, and correlation matrices, enabling you to extract valuable insights and make informed decisions from the data.

涵盖的内容

2个视频2篇阅读材料1个作业

In this module, we will delve into the fundamental concepts of clustering, a critical component of data analysis and pattern recognition. You will learn to recognize the importance of clustering and its role in identifying meaningful groups within data. You will explore key concepts, including data similarity, distance metrics, and the objective of grouping similar data points together. Additionally, the module equips you with the skills to assess the quality of clustering results through evaluation metrics like silhouette score and Dunn index, as well as visual inspection of clustering plots. By the end of this module, you will be proficient in understanding, applying, and evaluating clustering techniques for effective data analysis and pattern recognition.

涵盖的内容

4个视频4篇阅读材料2个作业

This module will provide you with a comprehensive exploration of clustering algorithms, enabling proficiency in this crucial data analysis technique. You will identify various clustering algorithms, such as k-means, hierarchical clustering, and DBSCAN, along with their underlying principles and assumptions. The expertise you will gain will help you determine the most suitable clustering algorithm based on data characteristics and objectives, and you will learn to implement these algorithms using programming languages like Python and tools such as scikit-learn. The clustering quality can be evaluated using internal and external validation methods, as discussed in Week 5.

涵盖的内容

4个视频4篇阅读材料3个作业

In this module, you will explore the realm of time series data, gaining a comprehensive understanding of its characteristics, components (trend, seasonality, and noise), and prevalent sources across diverse domains. Through effective visualization techniques and descriptive statistics, you will acquire the skills to recognize patterns and trends within time series data.

涵盖的内容

4个视频5篇阅读材料3个作业

位教师

Qurat-ul-Ain Azim
Northeastern University
6 门课程799 名学生

提供方

从 Data Analysis 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题