Edureka

Fine-Tuning & Optimizing Large Language Models

Edureka

Fine-Tuning & Optimizing Large Language Models

Edureka

位教师:Edureka

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
初级 等级

推荐体验

1 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
初级 等级

推荐体验

1 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度

您将学到什么

  • Apply transfer learning and parameter-efficient fine-tuning techniques (LoRA, adapters) to adapt pretrained LLMs for domain-specific tasks

  • Build end-to-end fine-tuning pipelines using Hugging Face Trainer APIs, including data preparation, hyperparameter tuning, and evaluation

  • Design and optimize LLM context using relevance selection, compression techniques, and scalable context engineering patterns

  • Optimize, deploy, monitor, and maintain fine-tuned LLMs using model compression, cloud inference, and continuous evaluation workflows

要了解的详细信息

可分享的证书

添加到您的领英档案

最近已更新!

January 2026

作业

17 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

积累特定领域的专业知识

本课程是 LLM Engineering: Prompting, Fine-Tuning, Optimization & RAG 专项课程 专项课程的一部分
在注册此课程时,您还会同时注册此专项课程。
  • 向行业专家学习新概念
  • 获得对主题或工具的基础理解
  • 通过实践项目培养工作相关技能
  • 获得可共享的职业证书

该课程共有5个模块

Explore how pretrained language models are adapted for new tasks using transfer learning techniques. Learn how parameter-efficient methods such as LoRA and adapters enable lightweight fine-tuning, and how domain-specific data improves model performance. By the end, you’ll understand how to customize large models efficiently while minimizing training cost and complexity.

涵盖的内容

13个视频5篇阅读材料4个作业1个讨论话题

Dive into the end-to-end workflows required to fine-tune language models effectively. Learn how to prepare and tokenize datasets, configure training pipelines using the Hugging Face Trainer API, and optimize hyperparameters for better results. By the end, you’ll be able to train, evaluate, and publish fine-tuned models with confidence.

涵盖的内容

10个视频4篇阅读材料4个作业

Explore how context influences LLM behavior and performance. Learn the fundamentals of context engineering, manage token limits, apply context compression techniques, and design scalable context patterns. By the end, you’ll understand how to structure and optimize context for reliable and production-ready LLM applications.

涵盖的内容

15个视频4篇阅读材料4个作业

Learn how to optimize fine-tuned models for efficient inference and real-world deployment. Explore model compression techniques such as quantization and knowledge distillation, scaling strategies in cloud environments, and continuous monitoring practices. By the end, you’ll know how to deploy, scale, and maintain LLMs while controlling cost and performance.

涵盖的内容

13个视频4篇阅读材料4个作业

Apply everything you’ve learned through a hands-on practice project focused on fine-tuning and adapting an LLM end to end. Reflect on key concepts, complete the final graded assessment, and identify next steps for advancing your skills. By the end, you’ll be prepared to apply model adaptation techniques in real-world AI systems.

涵盖的内容

1个视频1篇阅读材料1个作业1个讨论话题

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

Edureka
Edureka
142 门课程 136,726 名学生

提供方

Edureka

从 Software Development 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.

自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'

Jennifer J.

自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'

Larry W.

自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'

Chaitanya A.

''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题