Northeastern University
Data Warehousing and Integration Part 1
Northeastern University

Data Warehousing and Integration Part 1

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
2 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
2 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度

要了解的详细信息

可分享的证书

添加到您的领英档案

最近已更新!

August 2025

作业

13 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

该课程共有7个模块

This module introduces data warehousing and business intelligence, emphasizing their role in enhancing organizational decision-making. Data warehouses transform raw data into actionable insights using processes like ETL (Extract, Transform, and Load), supported by tools such as OLAP for querying and data mining. While operational databases (OLTP) are suited for daily transactions, OLAP databases are optimized for complex analytics.

涵盖的内容

3个视频6篇阅读材料1个作业

This module builds on the foundations of database design from the previous module, focussing on relational database modeling, normalization, and SQL. The readings will guide you in translating a conceptual EER diagram into a relational model, ensuring adherence to normalization principles and aiming for Third Normal Form (3NF). We’ll also emphasize understanding primary keys and foreign keys for maintaining data integrity and establishing table relationships. You will also have the opportunity to create and critique relational models. We’ll then explore SQL basics, covering syntax (SELECT, INSERT, UPDATE, DELETE), querying techniques (WHERE, ORDER BY, JOIN), and operations involving functions and aggregates (COUNT, SUM, AVG, MIN, MAX), which are fundamental in database querying and management.

涵盖的内容

3篇阅读材料2个作业1个应用程序项目

This module provides an introduction to data warehouse concepts. Data warehouses are based on a multidimensional model. We will look closely into the multidimensional model and its representation as data cubes (also known as hypercubes). We’ll examine how different aspects of data are categorized into facts, measures, and dimensions. Dimensions such as Product, Time, and Customer are organized hierarchically within a cube, allowing data to be analyzed at various levels of detail. Measures such as Quantity and Sales Amount are stored within these cubes, and analysts can navigate through different levels of detail using "rolling up" and "drilling down" techniques. We will also explore key concepts such as granularity, dimension schema, and member hierarchies, which are essential in understanding how data is structured and analyzed in multidimensional models. Finally, we will learn to use techniques such as disjointness, completeness, and correctness to ensure data accuracy and integrity when aggregating information in data cubes, collectively known as summarizability.

涵盖的内容

2个视频5篇阅读材料2个作业1个应用程序项目

In this module we’ll explore conceptual modeling with multidimensional models, visualized using MultiDim. This approach helps us organize data into facts and dimensions and understand the relationships between them, which is essential for designing data warehouses. We’ll explore topics such as dimensions (e.g., date, customer) and measures (e.g., quantity, total sales) in more detail. We’ll also explore the difference between primary events and secondary events and learn how they are used. Finally, we will look at another categorization of Measures into Flow: Level and Unit Measures.

涵盖的内容

2个视频4篇阅读材料3个作业

In this module, we’ll dive into conceptual modeling of hierarchies within data warehouses, exploring their definitions, characteristics, and significance. Balanced hierarchies have a uniform structure where each child has one parent and all branches are of the same length, making data analysis consistent and efficient. In contrast, unbalanced hierarchies have varying branch lengths and missing aggregation levels, offering flexibility to model real-world scenarios like product categories and geographical hierarchies. You’ll also be introduced to generalized hierarchies, which involve "is-a" relationships between supertypes and subtypes, allowing for detailed data representation but requiring careful management of aggregation and specialization. We’ll also explore alternative hierarchies, showcasing different ways to organize the same dimension, such as calendar vs. fiscal views of time. Finally, we’ll look at parallel hierarchies, both independent and dependent, as tools for analyzing data from multiple perspectives, representing complex organizational structures. Understanding these hierarchy types is crucial for effective data management and analysis in data warehousing.

涵盖的内容

4个视频3篇阅读材料2个作业

In this module, you’ll explore logical modeling in data warehousing, which is the process of designing a structured, abstract representation of data to be stored, focusing on how data is organized, related, and optimized for efficient querying and analysis. Building on what you learned in the previous modules, you'll take the next step in data warehouse design: translating a conceptual model into a logical model for implementation. The module will focus on the relational representation of data warehouses, including the study of various schema implementations: star, snowflake, starflake, and constellation. You'll also examine the rules for mapping a multidimensional conceptual model to a relational model, highlighting the role and importance of different types of keys in this process. We'll also discuss strategies for maintaining consistency in a data warehouse. Finally, you'll explore how to pre-populate certain dimensions, like time, to streamline operations and improve query performance.

涵盖的内容

6个视频11篇阅读材料2个作业1个应用程序项目

Designing a data warehouse is a complex process that requires transitioning from high-level conceptual models to detailed logical models. This transition is critical because it bridges the gap between understanding business needs and translating them into a technical framework that effectively supports those needs. In this module, you’ll expand on the logical modeling process covered in the previous module, with a particular focus on dimensional model design and the intricacies of hierarchy modeling. As you delve deeper, you’ll encounter logical modeling for advanced concepts such as many-to-many dimensions, links between facts, and facts with multiple granularities. We’ll also explore the concept of Slowly Changing Dimensions (SCDs), which are essential for managing historical data in your warehouse. You’ll learn how to implement different SCD types to accurately track and manage changes in dimension data over time. Finally, we’ll touch on SQL for OLAP, focusing on advanced concepts like aggregation and window functions, and you’ll learn how to use SQL to query and analyze data warehouses.

涵盖的内容

5个视频11篇阅读材料1个作业

位教师

Venkat Krishnamurthy
Northeastern University
3 门课程370 名学生

提供方

从 Data Analysis 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题