Master the fundamental principles of electronic circuits and devices with this comprehensive course designed for aspiring electrical engineers, electronics enthusiasts, and hardware developers. Beginning with essential circuit elements, resistors, and power sources, you'll progress through systematic circuit analysis techniques including Kirchhoff's laws, nodal and mesh analysis, and network theorems like Thevenin's and Norton's equivalents. The course covers both time-domain analysis of RL, RC, and RLC circuits and frequency-domain techniques using phasor algebra for AC circuit analysis. You'll explore semiconductor devices including diodes for signal shaping and voltage regulation, bipolar junction transistors (BJTs) for amplification and switching, MOSFETs for low-power applications, and operational amplifiers (op-amps) for building complex signal processing circuits. Through hands-on problem-solving and practical applications, you'll learn to design power circuits, calculate power factors in AC systems, and implement digital switching circuits. Whether you're preparing for advanced studies in electrical engineering, developing IoT devices, or pursuing careers in electronics design and embedded systems, this course provides the essential foundation in circuit theory, semiconductor physics, and analog electronics needed to analyze, design, and troubleshoot electronic systems across diverse engineering applications.


您将学到什么
Analyze circuits using Kirchhoff's laws, nodal and mesh techniques, and network theorems for systematic problem-solving.
Design amplifiers and switching circuits with diodes, BJTs, and MOSFETs for signal processing and power applications.
Apply phasor algebra for AC circuit analysis and calculate power factors to optimize electrical system performance.
Build operational amplifier circuits for signal conditioning, arithmetic operations, and advanced analog applications.
您将获得的技能
要了解的详细信息

添加到您的领英档案
November 2025
84 项作业
了解顶级公司的员工如何掌握热门技能

该课程共有10个模块
This module introduces you to basic electronics. You will learn about the basic elements of electronic circuits, focusing on resistors and varied power sources. You will gain insights into simple laws for circuit analysis, such as Kirchhoff’s current law (KCL), Kirchhoff’s voltage law (KVL), and Ohm’s law.
涵盖的内容
10个视频11篇阅读材料8个作业
In this module, you will learn about two basic circuit analysis techniques, nodal and mesh, to decipher circuits in a consistent and methodical approach. You will analyze complex electrical circuits in a simple systematic approach using nodal and mesh analysis. You will also solve electrical circuit problems using nodal and mesh analysis.
涵盖的内容
8个视频10篇阅读材料7个作业
In this module, you will learn about circuit simplification techniques, including Thevenin’s and Norton’s theorems. You will know how to represent large circuit blocks with simple equivalents. You will learn about the superposition theorem to examine the effects of multiple power sources on circuit performance. You will also learn about the maximum power transfer theorem to analyze and apply techniques to optimally fire up circuit loads.
涵盖的内容
9个视频7篇阅读材料10个作业
In this module, you will learn about other common circuit elements, like inductors (L) and capacitors (C), which have time-dependent responses to electrical stimuli. You will learn how to estimate the time-dependent response to DC excitation. You will learn to analyze circuits with resistors (R), inductors (L), capacitors (C), and combinations thereof.
涵盖的内容
10个视频5篇阅读材料11个作业
In this module, you will be able to represent the circuit elements in the frequency/phasor domain and apply previous circuit analysis techniques to circuits with sinusoidal (AC) power sources. You will learn how representation as a phasor aids in quickly analyzing circuits and understanding the impact on the circuit function. You will also learn the concepts of impedance and admittance of circuits.
涵盖的内容
8个视频8篇阅读材料9个作业
In this module, you will learn the difference between average, apparent, and reactive power. These impact the power consumption in your system. You will learn the significance of the power factor and its impact on AC circuit performance.
涵盖的内容
7个视频5篇阅读材料8个作业
This module introduces you to the non-linear circuit element, the diode. You will gain insights into two types of diodes, the simple p-n junction, and Zener diodes. You will examine its I-V characteristics and explore the application of these diodes in signal shaping and power circuits.
涵盖的内容
6个视频6篇阅读材料7个作业
In this module, you will learn about the three-terminal devices or transistors and their discovery. You will know the working of the bipolar junction transistor (BJT). You will learn about the output and transfer characteristics of the device BJT. You will apply this knowledge to understand the working of a simple amplifier and digital circuits.
涵盖的内容
7个视频7篇阅读材料8个作业
In this module, you will learn about metal-oxide-semiconductor-field-effect transistors (MOSFETS). You will learn about their output and transfer characteristics. You will learn the difference in operation and use of these transistors compared to BJT. You will also learn to build basic circuits using these devices for signal amplification and digital switching.
涵盖的内容
6个视频7篇阅读材料7个作业
In this module, you will learn about a powerful abstraction of the operational amplifier and its properties. You will learn to construct complex circuits using this simple, abstract model. You will also learn about circuit design blocks that use operational amplifiers (OPAMPs).
涵盖的内容
8个视频10篇阅读材料9个作业
位教师

从 Electrical Engineering 浏览更多内容
状态:预览Georgia Institute of Technology
状态:免费试用
University of Colorado Boulder
人们为什么选择 Coursera 来帮助自己实现职业发展




常见问题
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
更多问题
提供助学金,




