Whizlabs
Azure AI & ML: Optimize Language Models for AI Applications
Whizlabs

Azure AI & ML: Optimize Language Models for AI Applications

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
中级 等级

推荐体验

8 小时 完成
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
中级 等级

推荐体验

8 小时 完成
灵活的计划
自行安排学习进度

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

积累特定领域的专业知识

本课程是 Exam Prep DP-100: Microsoft Azure Data Scientist Associate 专项课程 专项课程的一部分
在注册此课程时,您还会同时注册此专项课程。
  • 向行业专家学习新概念
  • 获得对主题或工具的基础理解
  • 通过实践项目培养工作相关技能
  • 获得可共享的职业证书

该课程共有2个模块

This module provides a comprehensive understanding of Azure AI Foundry and its capabilities, equipping learners with the skills to leverage AI models for advanced applications. Participants will explore key concepts such as Retrieval Augmented Generation (RAG) for enhancing AI-driven responses, fine-tuning strategies for optimizing model performance, and best practices for deploying AI models in production environments. The module covers the Azure AI Foundry model catalog, compute considerations, and how to test and refine language models using the interactive playground. Learners will gain expertise in manually evaluating prompts, defining and tracking prompt variants, and utilizing Azure AI Search to create efficient search indexes. By the end of this module, participants will be prepared to work with Azure AI Foundry and ML tools, ensuring scalable and high-performing AI solutions for various enterprise applications.

涵盖的内容

9个视频2篇阅读材料2个作业1个讨论话题

This module provides a comprehensive understanding of preparing machine learning workflows for production using Azure Machine Learning, equipping learners with the skills needed for scalable and efficient deployment. Participants will explore best practices for transitioning from notebooks to scripts, executing command jobs with parameters, and integrating MLflow for model tracking and evaluation. The module covers pipeline creation, custom components, and prebuilt workflows—including an Automobile Price Prediction pipeline—to automate and optimize ML processes. Learners will gain expertise in working with metrics, hyperparameters, and data transformation techniques, ensuring model performance and reliability. Additionally, the module emphasizes key aspects of production readiness, such as managing resources, tracking ML models, and refining training workflows for real-world applications. By the end of this module, participants will be equipped with practical knowledge to implement and manage robust ML pipelines within Azure Machine Learning effectively

涵盖的内容

19个视频2篇阅读材料3个作业

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

Whizlabs Instructor
Whizlabs
138 门课程95,945 名学生

提供方

Whizlabs

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题