AWS: Feature Engineering, Data Transformation & Integrity is the second course in the Exam Prep (MLA-C01): AWS Certified Machine Learning Engineer – Associate Specialization. This course enables learners to build essential skills in preparing and transforming data for machine learning workloads using AWS services. It provides a structured, hands-on understanding of data cleaning, feature engineering, encoding techniques, and scalable ETL workflows on AWS.


AWS: Feature Engineering Data Transformation & Integrity
包含在 中
您将学到什么
Apply data cleaning, transformation, and feature engineering techniques to prepare datasets for machine learning.
Recognize methods to detect and reduce bias in data preparation and securely manage PII using AWS tools like DataBrew.
Implement ETL workflows using AWS Glue, Glue Crawlers, and DataBrew for data preparation.
Process large-scale datasets using Apache Spark on Amazon EMR for machine learning workloads.
您将获得的技能
要了解的详细信息

添加到您的领英档案
September 2025
4 项作业
了解顶级公司的员工如何掌握热门技能

积累特定领域的专业知识
- 向行业专家学习新概念
- 获得对主题或工具的基础理解
- 通过实践项目培养工作相关技能
- 获得可共享的职业证书

该课程共有2个模块
Welcome to Week 1 of the AWS: Feature Engineering, Data Transformation & Integrity course. This week, you’ll dive into the foundational steps of preparing high-quality data for machine learning workflows. We’ll begin with data cleaning and transformation techniques to ensure consistency and accuracy in your datasets. You’ll then explore feature engineering methods that help extract meaningful insights, followed by encoding techniques such as One-Hot Encoding, Label Encoding, and Tokenization to prepare categorical and textual data for modeling. Finally, we’ll focus on ensuring data integrity and fairness by learning how to address bias in data preparation and securely handle sensitive information (PII) using tools like AWS Glue DataBrew.
涵盖的内容
5个视频2篇阅读材料2个作业1个讨论话题
Welcome to Week 2 of the AWS: Feature Engineering, Data Transformation & Integrity course. This week, you'll dive into AWS-native tools for large-scale data processing and transformation. We’ll begin with AWS Glue, where you'll learn how to create Glue Crawlers, configure ETL jobs, and validate outputs for structured and semi-structured data. You'll explore AWS Glue DataBrew, a no-code tool that simplifies data profiling, cleaning, and transformation. We’ll also cover AWS Glue Data Quality to help ensure your datasets meet required standards for ML workflows. In the second half of the week, you’ll work with Amazon EMR to process massive datasets using Apache Spark. You'll launch EMR clusters, submit jobs, and transform data at scale — gaining hands-on experience with distributed data pipelines tailored for machine learning tasks.
涵盖的内容
10个视频3篇阅读材料2个作业
获得职业证书
将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。
位教师

提供方
从 Algorithms 浏览更多内容
- 状态:免费试用
Whizlabs
- 状态:免费
Amazon Web Services
- 状态:免费试用
- 状态:免费试用
Whizlabs
人们为什么选择 Coursera 来帮助自己实现职业发展




常见问题
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
更多问题
提供助学金,