University of Michigan
Applied Information Extraction in Python
University of Michigan

Applied Information Extraction in Python

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
高级设置 等级

推荐体验

3 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
高级设置 等级

推荐体验

3 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度

您将学到什么

  • Develop skills to process and interpret information presented in free-text data.

  • Identify the major classes of named entity recognition (NER) and implement, with guidance, state-of-the-art machine learning techniques for NER.

  • Compare, contrast, and select between multiple machine learning and deep learning approaches for NER.

  • Explore Large Language Models and configure a Transformer-based pipeline to extract entities of interest from a text dataset.

要了解的详细信息

可分享的证书

添加到您的领英档案

最近已更新!

June 2025

作业

14 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

积累特定领域的专业知识

本课程是 More Applied Data Science with Python 专项课程 专项课程的一部分
在注册此课程时,您还会同时注册此专项课程。
  • 向行业专家学习新概念
  • 获得对主题或工具的基础理解
  • 通过实践项目培养工作相关技能
  • 获得可共享的职业证书

该课程共有4个模块

This module introduces information extraction, covering key tasks and approaches for extracting relevant information from text. You will explore pattern-based and list-based methods to identify and extract information from text data, applying these techniques across diverse domains. You will also develop an end-to-end NLP pipeline to extract named entities from free text using terminology resources.

涵盖的内容

7个视频5篇阅读材料3个作业1个编程作业1个讨论话题1个非评分实验室

In Module 2, you'll dive into the world of named entity recognition (NER). You'll learn to define and identify named entities, and understand how to tackle related tasks by framing them as NER challenges. We'll explore how to use resources like standardized terminology and named gazettes to enhance NER. You'll also gain hands-on experience by training a machine learning model for sequence classification using an annotated text dataset. Finally, we'll discuss the pros and cons of different Markov models for NER, equipping you with the insights needed for practical applications.

涵盖的内容

7个视频6篇阅读材料4个作业1个编程作业1个非评分实验室

In Module 3, focused on neural network models, you will explore the differences between training deep learning models and traditional machine learning models. You'll learn how to model and train a neural network-based classifier, as well as formulate text as features for NER model training. We will discuss the pros and cons of deep learning approaches. You'll design a neural network model to identify concepts from free text and apply a trained deep learning model to solve NER tasks.

涵盖的内容

5个视频4篇阅读材料4个作业1个编程作业1个非评分实验室

In this module, you'll dive into the power of deep learning models in diverse fields such as healthcare and sports commentary. You'll learn how to build neural network models that are fine-tuned for specific tasks and discover how to set up a deep neural network for detecting key entities. We'll also introduce you to the world of large language models, showcasing their transformative capabilities and applications in information extraction.

涵盖的内容

5个视频4篇阅读材料3个作业1个编程作业1个插件

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

VG Vinod Vydiswaran
University of Michigan
3 门课程155,038 名学生

提供方

从 Machine Learning 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题