L&T EduTech
Air Conditioning Equipment Selection, Design and Sizing
L&T EduTech

Air Conditioning Equipment Selection, Design and Sizing

2,245 人已注册

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
4.4

(11 条评论)

中级 等级

推荐体验

1 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
4.4

(11 条评论)

中级 等级

推荐体验

1 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度

要了解的详细信息

可分享的证书

添加到您的领英档案

作业

6 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

积累特定领域的专业知识

本课程是 Design of Ventilation& Air conditioning System for Buildings 专项课程 专项课程的一部分
在注册此课程时,您还会同时注册此专项课程。
  • 向行业专家学习新概念
  • 获得对主题或工具的基础理解
  • 通过实践项目培养工作相关技能
  • 获得可共享的职业证书

该课程共有6个模块

High Side Equipment’s play a crucial role in HVAC (Heating, Ventilation, and Air Conditioning) systems, contributing to efficient temperature control within various facilities. These systems encompass diverse components, each designed for specific functions. Among them, chillers stand out as key components. These devices cool water or other fluids to regulate air temperatures. Chillers are classified based on their mechanism, such as absorption, centrifugal, or reciprocating, tailoring them to specific operational requirements. Cooling towers complement the chiller's function by dissipating heat from the system, promoting optimal efficiency. These towers come in various types, including natural draft, forced draft, and induced draft, each with distinct cooling characteristics and applications. Air Handling Units (AHUs) constitute another vital aspect of HVAC system. These units regulate and circulate air, ensuring a comfortable indoor environment. Their classification depends on the handling method, such as single-zone, dual-zone, or multi-zone units, adapting to diverse spatial requirements. Fan Coil Units (FCUs) further refine air temperature control, combining a fan and a heat exchanger. FCUs can be classified based on their mounting type, including horizontal, vertical, or ceiling-mounted units, catering to specific architectural and spatial constraints. The need for an efficient Air Distribution System is paramount in HVAC, ensuring the even distribution of conditioned air. This system comprises components like ductwork, air outlets, and diffusers. Ductwork, a critical element, comes in various types, such as rectangular, round, or spiral, tailored to diverse applications. Duct Accessories play a supporting role, enhancing the performance and efficiency of the overall air distribution system. These accessories include dampers, silencers, and grilles, each serving specific functions in controlling airflow and noise. In the realm of pipe accessories, components like valves, pumps, and expansion joints play vital roles in fluid distribution within HVAC systems. They enable precise control of water flow and pressure, ensuring optimal performance and longevity. In summary, a comprehensive understanding of these components and systems is essential for designing, installing, and maintaining efficient HVAC systems that meet the diverse needs of different environments.

涵盖的内容

18个视频1篇阅读材料1个作业

Air Handling Units (AHUs) play a pivotal role in HVAC systems, responsible for conditioning and circulating air within a controlled environment. These units consist of several major components, each contributing to their functionality. The key components include filters, heating and cooling coils, humidifiers, fans, dampers, and controls. Filters remove impurities from the air, coils regulate temperature, humidifiers control moisture levels, fans circulate air, dampers adjust airflow, and controls ensure precise system operation. AHUs are categorized based on air flow and configuration. In terms of air flow, there are constant air volume (CAV) units that maintain a consistent airflow and variable air volume (VAV) units that adjust airflow based on demand. Regarding configuration, AHUs can be horizontal, vertical, or modular, providing flexibility in installation. Another classification considers the application of AHUs. Common types include rooftop AHUs for outdoor installation, indoor AHUs for spaces with limited access, and air handling units specifically designed for critical environments like hospitals or laboratories. Air Handler Controls are integral to regulating and monitoring AHU performance. These controls manage temperature, humidity, and airflow, ensuring optimal conditions within the space served. AHUs must adhere to industry certifications, codes, and standards to guarantee compliance with safety and efficiency guidelines. When selecting an AHU, various factors come into play. It involves analyzing the specific requirements of the space, considering factors like air quality, temperature control, and energy efficiency. A well-designed AHU enhances indoor air quality, comfort, and overall system efficiency. Shifting focus to chilled water pumps, these are critical components in HVAC systems that circulate chilled water to remove heat from the building. Centrifugal pumps are commonly used, relying on the centrifugal force to move water. Positive displacement pumps, on the other hand, displace a specific volume of fluid with each rotation, providing precise control. Understanding fundamental pump terms and characteristics is crucial for efficient operation. This includes terms like head, flow rate, efficiency, and pump curves, all of which impact performance. Adjusting pump performance involves altering speed, impeller size, or system resistance, while pump selection parameters consider factors like system demand, pump type, and efficiency. Pump data sheets provide essential information for accurate selection and installation. Proper site installation ensures optimal pump performance and longevity, considering factors such as alignment, vibration control, and proper system integration. In summary, a comprehensive understanding of AHUs and chilled water pumps is essential for designing and maintaining efficient HVAC systems tailored to specific environmental needs.

涵盖的内容

16个视频1个作业

In a Chilled Water Pumping System, the main components include chillers, pumps, piping, and terminal units, all working collaboratively to circulate chilled water for cooling purposes. The Piping and Pumping Arrangement outlines the layout and configuration of pipes and pumps to ensure efficient water circulation throughout the HVAC system. Different distribution schemes, such as Constant Primary Flow, Constant Primary and Secondary Variable Flow, and Primary Variable Flow, dictate the manner in which chilled water is distributed to various building zones. Constant Primary Flow systems maintain a consistent flow rate in the primary loop, adjusting secondary flow rates based on demand. Constant Primary and Secondary Variable Flow systems allow for variable flow rates in both primary and secondary loops, providing greater flexibility and energy efficiency. Primary Variable Flow systems adjust the flow rate in the primary loop based on demand, influencing the secondary flow rate accordingly. A summary of the Chilled Water Pumping System emphasizes the importance of selecting the appropriate distribution scheme to meet the specific needs of a building, balancing energy efficiency and performance. Understanding important terminologies in pump head calculations is crucial for system design. Static Head refers to the height difference between the pump and the highest point in the system, Dynamic Head accounts for the friction losses in pipes, and Total Pump Head is the sum of static and dynamic heads. Net Positive Suction Head (NPSH) is critical in preventing cavitation, and differentiates between Open Loop and Closed Loop Circuits. Piping Circuits in HVAC systems dictate the flow of chilled water, while Head Losses due to Pipe Friction, Pipe Fittings, Pipe Accessories, and Equipment Losses are factors influencing overall system performance. A Sample Calculation may involve determining pump head requirements based on system characteristics and requirements, ensuring an optimal and energy-efficient design. In conclusion, a comprehensive understanding of these components, distribution schemes, and terminologies is vital for designing, installing, and maintaining an efficient Chilled Water Pumping System in HVAC applications.

涵盖的内容

14个视频1个作业

In a Chilled Water Pumping System, the main components include chillers, pumps, piping, and terminal units, all working collaboratively to circulate chilled water for cooling purposes. The Piping and Pumping Arrangement outlines the layout and configuration of pipes and pumps to ensure efficient water circulation throughout the HVAC system. Different distribution schemes, such as Constant Primary Flow, Constant Primary and Secondary Variable Flow, and Primary Variable Flow, dictate the manner in which chilled water is distributed to various building zones. Constant Primary Flow systems maintain a consistent flow rate in the primary loop, adjusting secondary flow rates based on demand. Constant Primary and Secondary Variable Flow systems allow for variable flow rates in both primary and secondary loops, providing greater flexibility and energy efficiency. Primary Variable Flow systems adjust the flow rate in the primary loop based on demand, influencing the secondary flow rate accordingly. A summary of the Chilled Water Pumping System emphasizes the importance of selecting the appropriate distribution scheme to meet the specific needs of a building, balancing energy efficiency and performance. Understanding important terminologies in pump head calculations is crucial for system design. Static Head refers to the height difference between the pump and the highest point in the system, Dynamic Head accounts for the friction losses in pipes, and Total Pump Head is the sum of static and dynamic heads. Net Positive Suction Head (NPSH) is critical in preventing cavitation, and differentiates between Open Loop and Closed Loop Circuits. Piping Circuits in HVAC systems dictate the flow of chilled water, while Head Losses due to Pipe Friction, Pipe Fittings, Pipe Accessories, and Equipment Losses are factors influencing overall system performance. A Sample Calculation may involve determining pump head requirements based on system characteristics and requirements, ensuring an optimal and energy-efficient design. In conclusion, a comprehensive understanding of these components, distribution schemes, and terminologies is vital for designing, installing, and maintaining an efficient Chilled Water Pumping System in HVAC applications.

涵盖的内容

13个视频1个作业

Piping systems and design form the backbone of HVAC installations, ensuring the efficient transport of chilled water and condenser water. The introduction to piping systems encompasses the fundamental principles and considerations in designing these networks. Chilled water pipe sizing is a crucial aspect, covers the basics, including factors like flow rates, velocity, and insulation, pressure drop, pump head, and balancing. Condenser water pipe sizing explores the specific requirements for the pipes carrying water to the condenser of the chiller, emphasizing factors like temperature differentials and flow rates. Fittings and accessories play a vital role in Chilled Water Piping, affecting flow dynamics and system efficiency. The typical connections in Chilled Water Pipes are examined, highlighting common practices in joining and sealing these pipes. Transitioning to duct systems and design, an introduction sets the stage for understanding the role of ductwork in HVAC. Duct sizing methods are critical in ensuring the proper airflow for effective temperature control. Pressure losses in the Air Distribution System are explored, emphasizing the need to minimize resistance and optimize efficiency. Duct sizing do's and don'ts provide practical guidelines for designing duct systems, focusing on factors like velocity, friction, and noise control. Air terminal units, which regulate airflow into conditioned spaces, are discussed in terms of their selection and placement. Duct construction and support systems delve into the physical aspects of ductwork, including materials, insulation, and the structural elements supporting the ducts. Typical ductwork layouts showcase common configurations, considering factors like space constraints and airflow requirements. In summary, a comprehensive overview of piping and duct systems is essential for HVAC professionals. From sizing considerations to the selection of fittings and accessories, understanding the intricacies of these components ensures the successful design and implementation of efficient heating, ventilation, and air conditioning systems.

涵盖的内容

15个视频1个作业

Static pressure is a fundamental parameter in HVAC systems, representing the pressure exerted by air on the walls of ducts and other components. Its importance lies in its role as a key indicator of system performance, influencing the airflow and efficiency of the entire HVAC system. Understanding and managing static pressure is crucial for maintaining optimal conditions in a given space. Pressure losses in a duct system encompass various types, each affecting the overall static pressure. These losses can occur through friction, duct fittings, accessories, and other elements. The Loss Coefficient for Duct Fittings, explored in two parts, delves into the impact of bends, tees, and other fittings on pressure drop, aiding in the precise calculation of static pressure. The critical path in static pressure calculation identifies the most significant contributors to pressure losses, allowing HVAC professionals to prioritize adjustments for optimal system performance. Sample calculations, provide practical insights into determining pressure losses and ensuring efficient duct design. Shifting to insulation, the introduction emphasizes its role in mitigating heat transfer within HVAC systems. Fundamentals of heat transfer and associated terminologies provide the theoretical foundation for insulation design. Design objectives and considerations, covered through instructor-led sessions, guide professionals in achieving energy-efficient and thermally effective insulation solutions. Insulation material types and the ASHRAE thermal conductivity chart aid in selecting materials that align with specific project requirements. Weather protection and jacketing considerations ensure the durability and longevity of insulation systems. Different types of duct insulation are explored, taking into account factors such as temperature, moisture, and space constraints. The role of acoustics in HVAC applications highlights the importance of sound control in duct systems, ensuring comfortable and noise-free environments. In summary, a comprehensive understanding of static pressure, pressure losses, insulation principles, and acoustics is essential for designing and maintaining efficient HVAC systems. Practical calculations and instructor-led discussions contribute to the knowledge base required for successful implementation in diverse heating, ventilation, and air conditioning applications.

涵盖的内容

16个视频1个作业

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

Subject Matter Expert
L&T EduTech
118 门课程150,973 名学生

提供方

L&T EduTech

从 Mechanical Engineering 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题