Edureka
Advanced Tokenization and Sentiment Analysis
Edureka

Advanced Tokenization and Sentiment Analysis

Edureka

位教师:Edureka

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
中级 等级

推荐体验

2 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
中级 等级

推荐体验

2 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度

您将学到什么

  • Build smarter NLP pipelines with advanced tokenization methods like byte-pair encoding, subword units, and streaming-friendly strategies.

  • Create powerful text representations using character-level, hybrid, and sentence embeddings for real-world search, classification, and clustering.

  • Learn sentiment analysis with VADER, machine learning models, and transformer-based approaches like BERT and RoBERTa.

  • Analyze opinion trends, perform aspect-level and multilingual sentiment analysis, and ensure fairness and accuracy in sensitive applications.

要了解的详细信息

可分享的证书

添加到您的领英档案

最近已更新!

July 2025

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

积累特定领域的专业知识

本课程是 Mastering NLP: Tokenization, Sentiment Analysis & Neural MT 专项课程 专项课程的一部分
在注册此课程时,您还会同时注册此专项课程。
  • 向行业专家学习新概念
  • 获得对主题或工具的基础理解
  • 通过实践项目培养工作相关技能
  • 获得可共享的职业证书

该课程共有4个模块

In this module, learners will explore advanced techniques for breaking down and encoding text for machine understanding. They will examine subword, byte-level, and adaptive tokenization methods used in modern NLP models. The module also introduces character-level and hybrid embeddings, as well as sentence embeddings for capturing semantic meaning in tasks like search, classification, and clustering.

涵盖的内容

19个视频6篇阅读材料5个作业1个讨论话题2个插件

In this module, learners will explore the full range of approaches used to analyze sentiment in text, from rule-based lexicons to deep learning with transformer models. They will examine how sentiment is extracted, scored, and classified, and learn how to handle challenges like class imbalance, domain specificity, and low-resource settings. Practical demonstrations will help reinforce the application of models such as VADER, Naïve Bayes, BERT, and RoBERTa in real-world sentiment analysis tasks.

涵盖的内容

16个视频5篇阅读材料4个作业1个插件

In this module, learners will examine how sentiment analysis is applied in dynamic, multilingual, and high-impact environments. The lessons focus on tracking sentiment trends over time, extracting aspect-level opinions, and extending sentiment models across languages. Learners will also evaluate the ethical risks of sentiment modeling and explore how to design fair, accountable systems for sensitive applications like healthcare and justice.

涵盖的内容

19个视频6篇阅读材料5个作业

In this final module, learners will consolidate key concepts from the course through a structured summary, a real-world project, and a reflective assignment. The focus is on applying the full range of tokenization and sentiment analysis techniques in practical, domain-relevant scenarios. This module also encourages learners to evaluate their understanding and prepare for real-world NLP tasks by integrating technical knowledge with ethical and contextual awareness.

涵盖的内容

1个视频1篇阅读材料2个作业1个讨论话题1个非评分实验室1个插件

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

Edureka
Edureka
98 门课程102,796 名学生

提供方

Edureka

从 Machine Learning 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题

¹ 本课程的部分作业采用 AI 评分。对于这些作业,将根据 Coursera 隐私声明使用您的数据。