The course extends the fundamental tools in "Machine Learning Foundations" to powerful and practical models by three directions, which includes embedding numerous features, combining predictive features, and distilling hidden features. [這門課將先前「機器學習基石」課程中所學的基礎工具往三個方向延伸為強大而實用的工具。這三個方向包括嵌入大量的特徵、融合預測性的特徵、與萃取潛藏的特徵。]

Profitez d'une croissance illimitée avec un an de Coursera Plus pour 199 $ (régulièrement 399 $). Économisez maintenant.

(35 avis)
Compétences que vous acquerrez
- Catégorie : Applied Machine Learning
- Catégorie : Artificial Neural Networks
- Catégorie : Random Forest Algorithm
- Catégorie : Dimensionality Reduction
- Catégorie : Embeddings
- Catégorie : Decision Tree Learning
- Catégorie : Deep Learning
- Catégorie : Autoencoders
- Catégorie : Classification Algorithms
- Catégorie : Feature Engineering
- Catégorie : Logistic Regression
- Catégorie : Supervised Learning
- Catégorie : Machine Learning
- Catégorie : Model Evaluation
- Catégorie : Machine Learning Algorithms
Détails à connaître

Ajouter à votre profil LinkedIn
4 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Il y a 16 modules dans ce cours
more robust linear classification solvable with quadratic programming
Inclus
5 vidéos4 lectures
another QP form of SVM with valuable geometric messages and almost no dependence on the dimension of transformation
Inclus
4 vidéos
kernel as a shortcut to (transform + inner product): allowing a spectrum of models ranging from simple linear ones to infinite dimensional ones with margin control
Inclus
4 vidéos
a new primal formulation that allows some penalized margin violations, which is equivalent to a dual formulation with upper-bounded variables
Inclus
4 vidéos1 devoir
soft-classification by an SVM-like sparse model using two-level learning, or by a "kernelized" logistic regression model using representer theorem
Inclus
4 vidéos
kernel ridge regression via ridge regression + representer theorem, or support vector regression via regularized tube error + Lagrange dual
Inclus
4 vidéos
blending known diverse hypotheses uniformly, linearly, or even non-linearly; obtaining diverse hypotheses from bootstrapped data
Inclus
4 vidéos
"optimal" re-weighting for diverse hypotheses and adaptive linear aggregation to boost weak algorithms
Inclus
4 vidéos1 devoir
recursive branching (purification) for conditional aggregation of simple hypotheses
Inclus
4 vidéos
bootstrap aggregation of randomized decision trees with automatic validation
Inclus
4 vidéos
aggregating trees from functional + steepest gradient descent subject to any error measure
Inclus
4 vidéos
automatic feature extraction from layers of neurons with the back-propagation technique for stochastic gradient descent
Inclus
4 vidéos1 devoir
an early and simple deep learning model that pre-trains with denoising autoencoder and fine-tunes with back-propagation
Inclus
4 vidéos
linear aggregation of distance-based similarities to prototypes found by clustering
Inclus
4 vidéos
linear models of items on extracted user features (or vice versa) jointly optimized with stochastic gradient descent for recommender systems
Inclus
4 vidéos
summary from the angles of feature exploitation, error optimization, and overfitting elimination towards practical use cases of machine learning
Inclus
4 vidéos1 devoir
Instructeur

Offert par
En savoir plus sur Machine Learning
Statut : Essai gratuitJohns Hopkins University
Statut : Essai gratuitFractal Analytics
Statut : Essai gratuitFractal Analytics
Statut : Essai gratuitCoursera
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?




Foire Aux Questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Plus de questions
Aide financière disponible,




