Introduction to Deep Learning provides a rigorous, concept-driven introduction to the models that power modern AI systems—from image recognition to large language models. You’ll build neural networks from first principles, understanding how forward passes, loss functions, and backpropagation enable learning. As the course progresses, you’ll train and regularize deep models, design convolutional networks for vision, model sequences with RNNs, LSTMs, and attention, and apply transformer-based architectures such as BERT, GPT, and Vision Transformers. You will also look at the latest trends in contrastive learning and CLIP. By combining mathematical foundations with practical application, this course equips you to understand, train, and use deep learning models with confidence.

Acquérir des compétences de haut niveau avec Coursera Plus pour 199 $ (régulièrement 399 $). Économisez maintenant.

Introduction to Deep Learning
Ce cours fait partie de Spécialisation Machine Learning: Theory and Hands-on Practice with Python

Instructeur : Daniel E. Acuna
Inclus avec
Expérience recommandée
Ce que vous apprendrez
Explain the mathematical foundations of neural networks and how they learn from data.
Train and regularize deep neural networks for effective generalization.
Design and apply specialized neural network architectures for images and sequences.
Apply transformer-based and multimodal models to real-world scenarios.
Compétences que vous acquerrez
- Catégorie : Keras (Neural Network Library)
- Catégorie : Natural Language Processing
- Catégorie : Large Language Modeling
- Catégorie : Network Architecture
- Catégorie : Vision Transformer (ViT)
- Catégorie : Network Model
- Catégorie : Recurrent Neural Networks (RNNs)
- Catégorie : Artificial Intelligence and Machine Learning (AI/ML)
- Catégorie : Embeddings
- Catégorie : PyTorch (Machine Learning Library)
Détails à connaître

Ajouter à votre profil LinkedIn
janvier 2026
6 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable

Il y a 5 modules dans ce cours
Welcome to Introduction to Deep Learning. This module builds the mathematical foundations of neural networks. Starting from linear models, you will learn about the artificial neuron and develop the mathematics of gradient descent and backpropagation. The focus is on understanding how and why neural networks work through the underlying math—covering the forward pass, loss functions, and the chain rule to show how information flows through networks and how they learn from data.
Inclus
15 vidéos5 lectures2 devoirs1 devoir de programmation
This module focuses on training neural networks effectively. Topics include optimization algorithms, hyperparameter tuning, and regularization techniques to prevent overfitting and achieve good generalization. You will compare different optimizers like SGD, momentum, and Adam, understand how learning rate and batch size affect training dynamics, and apply weight decay, dropout, early stopping, and batch normalization.
Inclus
7 vidéos2 lectures1 devoir1 devoir de programmation
This module introduces you to convolutional neural networks (CNNs), the foundation of modern computer vision. Topics include how convolutional and pooling layers work, CNN architecture design, and practical techniques like data augmentation and transfer learning. The module covers classic architectures like VGG and ResNet and explains why CNNs outperform fully-connected networks on image data.
Inclus
7 vidéos2 lectures1 devoir1 devoir de programmation
This module covers sequence modeling, starting with recurrent neural networks (RNNs) and long short-term memory networks (LSTMs), then progressing to the attention mechanism—the key innovation that led to transformers. Topics include how RNNs maintain hidden states across time steps, why the vanishing gradient problem motivated LSTMs, and how attention allows models to focus on relevant parts of their input.
Inclus
7 vidéos1 lecture1 devoir1 devoir de programmation
This final module covers the transformer architecture, which has revolutionized deep learning across domains. Topics include BERT and GPT as encoder-only and decoder-only variants, Vision Transformers (ViT) that apply attention to images, and CLIP for multimodal learning connecting vision and language. The module emphasizes applying pre-trained models to real tasks.
Inclus
8 vidéos1 lecture1 devoir1 devoir de programmation
Obtenez un certificat professionnel
Ajoutez ce titre à votre profil LinkedIn, à votre curriculum vitae ou à votre CV. Partagez-le sur les médias sociaux et dans votre évaluation des performances.
Instructeur

Offert par
En savoir plus sur Machine Learning
Statut : Essai gratuit
Statut : Essai gratuit
Statut : Essai gratuit
Statut : Essai gratuitUniversity of Colorado Boulder
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?





Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Plus de questions
Aide financière disponible,

