Engineer Features and Evaluate Models for Production is an intermediate course for machine learning practitioners and data scientists who are ready to move beyond notebooks and build production-grade ML systems. Getting a model to work once is easy; making it reliable, reproducible, and efficient in production is the real challenge. This course provides the engineering discipline to bridge that gap.

Profitez d'une croissance illimitée avec un an de Coursera Plus pour 199 $ (régulièrement 399 $). Économisez maintenant.

Expérience recommandée
Ce que vous apprendrez
Build feature engineering pipelines and evaluate ML experiments using MLOps tools to select and deploy production-ready models.
Compétences que vous acquerrez
- Catégorie : Data Pipelines
- Catégorie : MLOps (Machine Learning Operations)
- Catégorie : Performance Tuning
- Catégorie : Data Preprocessing
- Catégorie : Predictive Modeling
- Catégorie : Feature Engineering
- Catégorie : Performance Analysis
- Catégorie : Data Transformation
- Catégorie : Model Evaluation
Détails à connaître

Ajouter à votre profil LinkedIn
décembre 2025
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Il y a 2 modules dans ce cours
In this foundational module, learners will explore the critical importance of robust and reproducible data workflows in the management of production AI systems. They will delve into the reasons why professional-grade pipelines are essential, transitioning from a conceptual understanding to the practical creation of a feature engineering pipeline using scikit-learn. Through a blend of engaging dialogues, targeted readings, and instructional videos, learners will identify key components of effective pipelines, adhere to best practices in data transformation, and apply these insights to a realistic scenario: predicting customer churn. By the end of the module, participants will be equipped to construct a comprehensive pipeline that enhances model reliability and facilitates effective collaboration between experimentation and production environments.
Inclus
1 vidéo1 lecture1 devoir1 laboratoire non noté
In this module, you will master the art of moving from raw experiment results to a final, justifiable recommendation. You will use TensorBoard to analyze training dynamics and diagnose issues, then synthesize your findings to select and defend a model choice that balances performance with real-world production constraints.
Inclus
1 vidéo1 lecture1 devoir1 laboratoire non noté
Instructeur

Offert par
En savoir plus sur Machine Learning
Statut : Essai gratuit
DeepLearning.AI
Statut : Essai gratuit
Statut : Essai gratuitGoogle Cloud
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?





Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Plus de questions
Aide financière disponible,
¹ Certains travaux de ce cours sont notés par l'IA. Pour ces travaux, vos Données internes seront utilisées conformément à Notification de confidentialité de Coursera.

