By completing this course, learners will be able to prepare datasets in R, apply statistical and visualization techniques, build regression models, and design, run, and evaluate neural networks. The course begins with data preparation essentials, including working with dataframes, descriptive statistics, and environment setup, ensuring learners can confidently manage their workflow. It then advances to data visualization, where learners generate line graphs, scatter plots, and advanced visualizations to interpret patterns and relationships. Regression modeling concepts are introduced to provide a solid predictive foundation. Finally, the course transitions to deep learning, guiding learners through dataset preparation, neural network coding, multilayer perceptron (MLP) architecture, and predictive testing.



Ce que vous apprendrez
Prepare datasets, apply stats, and create visualizations in R.
Build and evaluate regression models for predictive analysis.
Design, run, and test neural networks using R and MLPs.
Compétences que vous acquerrez
- Catégorie : Predictive Analytics
- Catégorie : Artificial Neural Networks
- Catégorie : Regression Analysis
- Catégorie : R Programming
- Catégorie : Deep Learning
- Catégorie : Data Cleansing
- Catégorie : Statistical Methods
- Catégorie : Predictive Modeling
- Catégorie : Statistical Programming
- Catégorie : Data Manipulation
- Catégorie : Scatter Plots
- Catégorie : Data Science
- Catégorie : Descriptive Statistics
- Catégorie : Performance Testing
- Catégorie : Data Visualization Software
Détails à connaître

Ajouter à votre profil LinkedIn
octobre 2025
13 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Il y a 3 modules dans ce cours
This module introduces learners to the fundamentals of working with R for data science and deep learning projects. Learners will explore dataframes, descriptive statistics, directory setup, variable assignment, and essential R syntax. The module ensures that learners can confidently prepare their environment and datasets before advancing to complex modeling.
Inclus
11 vidéos4 devoirs1 plugin
This module focuses on building strong visualization and regression skills in R. Learners will generate various plots such as line graphs, scatter plots, and multiple plot frames to explore data patterns. The module also introduces regression modeling concepts, including linear and multiple regression, to establish a strong foundation for predictive modeling.
Inclus
9 vidéos4 devoirs
This module transitions learners from regression models to deep learning with neural networks in R. It covers preparing datasets, running neural network code, analyzing hidden layers, and evaluating model predictions. By the end of the module, learners will be able to design, execute, and test neural networks for real-world predictive tasks.
Inclus
17 vidéos5 devoirs
En savoir plus sur Machine Learning
- Statut : Essai gratuit
- Statut : Essai gratuit
- Statut : Essai gratuit
- Statut : Essai gratuit
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?





Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Plus de questions
Aide financière disponible,