Poor data preprocessing causes 80% of ML production failures, making data quality more critical than algorithm choice. This comprehensive course equips Java developers with essential skills to build enterprise-grade preprocessing pipelines that transform messy real-world data into ML-ready features. Through hands-on labs using OpenCSV and Apache Commons CSV, you'll master parsing techniques for large datasets while implementing normalization strategies including Min-Max scaling and Z-score standardization.

Erwerben Sie mit Coursera Plus für 199 $ (regulär 399 $) das nächste Level. Jetzt sparen.

Parse & Normalize Data for ML Pipelines
Dieser Kurs ist Teil von Spezialisierung für Level Up: Java-Powered Machine Learning


Dozenten: Aseem Singhal
Bei enthalten
Empfohlene Erfahrung
Was Sie lernen werden
Create efficient CSV parsers using Java libraries with object mapping, error handling, and streaming for 100K+ records.
Build data cleaning pipelines with multiple scaling algorithms, outlier handling, and serializable parameters for train-inference consistency.
Architect modular pipelines using builder patterns that chain operations with monitoring and ML framework integration for large-scale data.
Kompetenzen, die Sie erwerben
- Kategorie: Java
- Kategorie: Data Validation
- Kategorie: Data Cleansing
- Kategorie: Object Oriented Programming (OOP)
- Kategorie: Feature Engineering
- Kategorie: Continuous Monitoring
- Kategorie: Data Processing
- Kategorie: Data Preprocessing
- Kategorie: Data Pipelines
- Kategorie: Data Transformation
- Kategorie: Data Quality
- Kategorie: Unit Testing
- Kategorie: Data Access
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
Dezember 2025
1 Aufgabe
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage

In diesem Kurs gibt es 3 Module
This module establishes the foundation for robust data ingestion by teaching learners to efficiently parse large-scale delimited files using industry-standard Java libraries. Students will master the critical skills of transforming raw CSV/TSV data into strongly-typed Java objects while handling real-world challenges like character encoding issues, missing values, and memory optimization for datasets exceeding 100K records.
Das ist alles enthalten
4 Videos3 Lektüren
This module focuses on implementing comprehensive data cleaning and transformation pipelines that prepare raw features for optimal ML model performance. Learners will build statistical normalization utilities using multiple scaling algorithms, develop robust strategies for handling outliers and missing values, and create serializable transformation parameters that ensure consistent data preprocessing between training and production environments.
Das ist alles enthalten
3 Videos2 Lektüren
This module integrates parsing and normalization capabilities into enterprise-grade, modular preprocessing workflows using advanced Java design patterns. Students will architect production-ready pipelines with functional programming principles, implement comprehensive monitoring and error handling systems, and seamlessly integrate their data processing solutions with popular Java ML frameworks while maintaining performance efficiency for large-scale deployments.
Das ist alles enthalten
4 Videos3 Lektüren1 Aufgabe
Erwerben Sie ein Karrierezertifikat.
Fügen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.
von
Mehr von Data Analysis entdecken
Status: Kostenloser TestzeitraumCoursera
Status: Kostenloser Testzeitraum
Status: Kostenloser Testzeitraum
Status: Kostenloser Testzeitraum
Warum entscheiden sich Menschen für Coursera für ihre Karriere?




Häufig gestellte Fragen
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Weitere Fragen
Finanzielle Unterstützung verfügbar,




