Improve the accuracy and reliability of your machine learning models by mastering ensemble techniques. In this intermediate-level course, you’ll learn why combining multiple models can outperform any single algorithm and how to design, select, and apply the right ensemble approach for different tasks. You’ll work through three core ensemble methods—bagging, boosting, and random forests—using Java in a Jupyter Notebook environment. Starting with the fundamentals of decision trees, you’ll progress from theory to practice, exploring bootstrap sampling, hard/soft voting, and the bias–variance trade-offs that influence ensemble performance. Each lesson combines focused videos, scenario-based discussions, AI-graded labs, and a capstone project, guiding you to build and evaluate ensembles on real datasets.

Erwerben Sie mit Coursera Plus für 199 $ (regulär 399 $) das nächste Level. Jetzt sparen.

Improve Accuracy with ML Ensemble Methods
Dieser Kurs ist Teil von Spezialisierung für Level Up: Java-Powered Machine Learning


Dozenten: Reza Moradinezhad
Bei enthalten
Empfohlene Erfahrung
Was Sie lernen werden
Explain the core principles of ensemble learning and describe when and why combining diverse models improves predictive accuracy.
Implement bagging and boosting algorithms in Java within a Jupyter Notebook, tuning key parameters for optimal performance.
Build, tune, and evaluate random forest models for classification and regression, interpret features, and compare results with ensemble methods.
Kompetenzen, die Sie erwerben
- Kategorie: Jupyter
- Kategorie: Random Forest Algorithm
- Kategorie: Feature Engineering
- Kategorie: Model Evaluation
- Kategorie: Applied Machine Learning
- Kategorie: Sampling (Statistics)
- Kategorie: Learning Styles
- Kategorie: Decision Tree Learning
- Kategorie: Machine Learning
- Kategorie: Data Preprocessing
- Kategorie: Classification Algorithms
- Kategorie: Program Evaluation
- Kategorie: Program Implementation
- Kategorie: Supervised Learning
- Kategorie: Java
- Kategorie: Predictive Modeling
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
Dezember 2025
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage

In diesem Kurs gibt es 3 Module
This module explains the core idea behind ensemble learning—combining multiple models to achieve higher predictive accuracy and stability than any single model. Learners explore how ensembles reduce bias and variance, review real-world use cases, and implement voting classifiers to see the performance gains firsthand.
Das ist alles enthalten
4 Videos2 Lektüren1 peer review
This module teaches how to increase model accuracy by reducing variance with bagging and reducing bias with boosting. Learners practice bootstrap sampling, implement bagging in Java using Jupyter, and build a boosting model including AdaBoost to see how sequential learning corrects errors.
Das ist alles enthalten
3 Videos1 Lektüre1 peer review
This module covers decision tree fundamentals and shows how random forests combine many trees through feature bagging and averaging to create powerful, stable predictors. Learners build, tune, and evaluate random forest models in Java, interpreting feature importance and comparing results to single-tree models.
Das ist alles enthalten
4 Videos1 Lektüre1 Aufgabe2 peer reviews
Erwerben Sie ein Karrierezertifikat.
Fügen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.
von
Mehr von Machine Learning entdecken
Status: Kostenloser Testzeitraum
Status: Kostenloser TestzeitraumBoard Infinity
Status: Kostenloser Testzeitraum
Status: Kostenloser TestzeitraumBoard Infinity
Warum entscheiden sich Menschen für Coursera für ihre Karriere?





Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Weitere Fragen
Finanzielle Unterstützung verfügbar,
¹ Einige Aufgaben in diesem Kurs werden mit AI bewertet. Für diese Aufgaben werden Ihre Daten in Übereinstimmung mit Datenschutzhinweis von Courseraverwendet.

