Evaluate LLMs: Test and Prove Significance is an intermediate course for ML engineers, AI practitioners, and data scientists tasked with proving the value of model updates. When making high-stakes deployment decisions, a simple accuracy score is not enough. This course equips you with the statistical methods to rigorously validate LLM performance improvements. You will learn to quantify uncertainty by calculating and interpreting confidence intervals, and to prove whether changes are meaningful by conducting formal hypothesis tests like the Chi-Square test. Through hands-on labs using Python libraries like SciPy and Matplotlib, you will analyze model outputs, test for statistical significance, and create compelling visualizations with error bars that clearly communicate your findings to stakeholders. By the end of this course, you will be able to move beyond subjective "it seems better" evaluations to confidently state, "we can prove it's better," ensuring every deployment decision is backed by sound statistical evidence.

Genießen Sie unbegrenztes Wachstum mit einem Jahr Coursera Plus für 199 $ (regulär 399 $). Jetzt sparen.

Empfohlene Erfahrung
Was Sie lernen werden
Rigorously evaluate LLM performance using statistical tests and confidence intervals to make data-driven deployment decisions.
Kompetenzen, die Sie erwerben
- Kategorie: Statistical Methods
- Kategorie: Large Language Modeling
- Kategorie: Statistical Hypothesis Testing
- Kategorie: Matplotlib
- Kategorie: Probability & Statistics
- Kategorie: Statistical Inference
- Kategorie: Data-Driven Decision-Making
- Kategorie: MLOps (Machine Learning Operations)
- Kategorie: Experimentation
- Kategorie: Model Evaluation
- Kategorie: Statistical Visualization
- Kategorie: Performance Metric
- Kategorie: Statistical Analysis
- Kategorie: Data Visualization
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
Dezember 2025
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

In diesem Kurs gibt es 1 Modul
This course provides an end-to-end walkthrough of how to rigorously evaluate, validate, and communicate the performance of Large Language Models (LLMs). You will move from understanding why single metrics are insufficient to quantifying uncertainty with confidence intervals, proving improvements with hypothesis tests, and finally, creating persuasive visualizations to support data-driven deployment decisions.
Das ist alles enthalten
5 Videos2 Lektüren3 Aufgaben3 Unbewertete Labore
Dozent

von
Mehr von Machine Learning entdecken
Status: Kostenloser TestzeitraumSimplilearn
Status: Kostenloser Testzeitraum
Status: Kostenloser Testzeitraum
Warum entscheiden sich Menschen für Coursera für ihre Karriere?




Häufig gestellte Fragen
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Weitere Fragen
Finanzielle Unterstützung verfügbar,
¹ Einige Aufgaben in diesem Kurs werden mit AI bewertet. Für diese Aufgaben werden Ihre Daten in Übereinstimmung mit Datenschutzhinweis von Courseraverwendet.





