Poor data structure selection causes 60% of ML performance bottlenecks, making architecture choices highly critical. This course equips Java developers to build high-performance ML data processing systems that handle enterprise-scale datasets. Through hands-on implementation of arrays, hash maps, trees, heaps, graphs, and tries, you'll master performance optimization techniques that deliver measurable 2x-10x improvements over naive approaches. You'll architect scalable solutions using advanced structures like segment trees and sparse matrices that integrate seamlessly with Java ML frameworks, including Weka, Smile, and DL4J. Interactive performance benchmarking labs simulate real production scenarios, including memory optimization challenges, concurrent access patterns, and scaling bottlenecks under enterprise constraints.

Erwerben Sie mit Coursera Plus für 199 $ (regulär 399 $) das nächste Level. Jetzt sparen.

Choose Optimal Data Structures for ML
Dieser Kurs ist Teil von Spezialisierung für Level Up: Java-Powered Machine Learning

Dozent: Aseem Singhal
Bei enthalten
Empfohlene Erfahrung
Was Sie lernen werden
1
2
3
Kompetenzen, die Sie erwerben
- Kategorie: Feature Engineering
- Kategorie: Performance Testing
- Kategorie: Scalability
- Kategorie: Applied Machine Learning
- Kategorie: Performance Analysis
- Kategorie: Java
- Kategorie: MLOps (Machine Learning Operations)
- Kategorie: Tree Maps
- Kategorie: Graph Theory
- Kategorie: Data Structures
- Kategorie: System Monitoring
- Kategorie: Benchmarking
- Kategorie: Performance Tuning
- Kategorie: Program Implementation
- Kategorie: Data Processing
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
Dezember 2025
1 Aufgabe
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage

In diesem Kurs gibt es 3 Module
This module builds expertise in selecting and implementing optimal Java data structures for ML workflows. Learners will evaluate time/space complexity in realistic ML contexts, implement efficient solutions using arrays, lists, hash maps, trees, and heaps, and measure actual runtime performance improvements on datasets ranging from 1K to 1M+ records while building core ML preprocessing operations.
Das ist alles enthalten
4 Videos3 Lektüren
This module advances learners to implement specialized data structures for scalable ML systems. The learners will build custom solutions using sets, graphs, tries, and segment trees to handle uniqueness constraints, recommendation engines, string pattern matching, and range queries, demonstrating measurable performance gains over naive approaches in complex, large-scale ML pipeline scenarios.
Das ist alles enthalten
3 Videos2 Lektüren
This module culminates in production-ready ML system architecture by teaching learners to optimize memory-performance trade-offs and implement sparse data representations. The learners will complete end-to-end case studies that achieve 2x-10x performance improvements in feature engineering pipelines and model serving scenarios, while maintaining enterprise-level code quality, error handling, and scalability requirements.
Das ist alles enthalten
4 Videos3 Lektüren1 Aufgabe
Erwerben Sie ein Karrierezertifikat.
Fügen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.
Dozent

von
Mehr von Machine Learning entdecken
Status: Kostenloser Testzeitraum
Status: Kostenloser Testzeitraum
Status: Kostenloser Testzeitraum
Status: VorschauBirla Institute of Technology & Science, Pilani
Warum entscheiden sich Menschen für Coursera für ihre Karriere?




Häufig gestellte Fragen
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Weitere Fragen
Finanzielle Unterstützung verfügbar,




